Arlington V, Association. AP Diagnostic and Statistical Manual of Mental disorders. Am Psychiatr Assoc. 2013;5:612–3.
Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry. 2003;60(12):1187–92.
Knapp M, Mangalore R, Simon J. The global costs of schizophrenia. Schizophr Bull. 2004;30(2):279–93.
Fan H-m, Sun X-y, Niu W, Zhao L, Zhang Q-L, Li W-s, et al. Altered microRNA expression in peripheral blood mononuclear cells from young patients with schizophrenia. J Mol Neurosci. 2015;56:562–71.
Article CAS PubMed Google Scholar
Narayan S, Tang B, Head SR, Gilmartin TJ, Sutcliffe JG, Dean B, et al. Molecular profiles of schizophrenia in the CNS at different stages of illness. Brain Res. 2008;1239:235–48.
Article CAS PubMed PubMed Central Google Scholar
Ramaker RC, Bowling KM, Lasseigne BN, Hagenauer MH, Hardigan AA, Davis NS, et al. Post-mortem molecular profiling of three psychiatric disorders. Genome Med. 2017;9:1–12.
Du Y, Tan WL, Chen L, Yang ZM, Li XS, Xue X, et al. Schizophr Bull. 2021;47(5):1288–99. PubMed PMID: 33837780. Pubmed Central PMCID: PMC8379541. Epub 2021/04/11. eng. Exosome Transplantation From Patients With Schizophrenia Causes Schizophrenia-Relevant Behaviors in Mice: An Integrative Multi-omics Data Analysis.
Du Y, Li XS, Chen L, Chen GY, Cheng Y. A Network Analysis of Epigenetic and transcriptional regulation in a neurodevelopmental rat model of Schizophrenia with implications for Translational Research. Schizophr Bull. 2020;46(3):612–22. PubMed PMID: 31738422. Pubmed Central PMCID: PMC7147587. Epub 2019/11/19. eng.
Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, et al. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 2015;47(3):199–208.
Article CAS PubMed PubMed Central Google Scholar
Du Y, Yu Y, Hu Y, Li X-W, Wei Z-X, Pan R-Y, et al. Genome-Wide, Integrative Analysis implicates exosome-derived MicroRNA dysregulation in Schizophrenia. Schizophr Bull. 2019;10(24):45:1257–66.
Gibbons A, Udawela M, Dean B. Non-coding RNA as novel players in the pathophysiology of schizophrenia. Non-coding RNA. 2018;4(2):11.
Article PubMed PubMed Central Google Scholar
Liu B, Sun L, Liu Q, Gong C, Yao Y, Lv X, et al. A cytoplasmic NF-κB interacting long noncoding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis. Cancer Cell. 2015;27(3):370–81.
Article CAS PubMed Google Scholar
Kumarswamy R, Bauters C, Volkmann I, Maury F, Fetisch J, Holzmann A, et al. Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circul Res. 2014;114(10):1569–75.
Policarpo R, Sierksma A, De Strooper B, d’Ydewalle C. From junk to function: LncRNAs in CNS health and disease. Front Mol Neurosci. 2021;14:714768.
Article CAS PubMed PubMed Central Google Scholar
Hoseth EZ, Krull F, Dieset I, Mørch RH, Hope S, Gardsjord ES, et al. Exploring the wnt signaling pathway in schizophrenia and bipolar disorder. Translational Psychiatry. 2018;8(1):55. 2018/03/06.
Article PubMed PubMed Central Google Scholar
Liu C, Kato Y, Zhang Z, Do VM, Yankner BA, He X. β-Trcp couples β-catenin phosphorylation-degradation and regulates Xenopus axis formation. Proceedings of the National Academy of Sciences. 1999;96(11):6273-8.
Hayat R, Manzoor M, Hussain A. Wnt signaling pathway: a comprehensive review. Cell Biol Int. 2022;46(6):863–77.
Article CAS PubMed Google Scholar
Vallée A. Neuroinflammation in schizophrenia: the key role of the WNT/β-catenin pathway. Int J Mol Sci. 2022;23(5):2810.
Article PubMed PubMed Central Google Scholar
Astaneh M, Ghafouri-Fard S. Long non-coding RNAs as regulators of Wnt/β catenin pathway. Gene Rep. 2019;16:100404.
Wang D, Li Z, Yin H. Long non-coding RNA CCAT2 activates RAB14 and acts as an Oncogene in Colorectal Cancer. Front Oncol. 2021;11:751903. PubMed PMID: 34868956. Pubmed Central PMCID: PMC8639683. Epub 2021/12/07. eng.
Article CAS PubMed PubMed Central Google Scholar
Yu JE, Ju JA, Musacchio N, Mathias TJ, Vitolo MI. Long noncoding RNA DANCR activates Wnt/β-Catenin signaling through MiR-216a inhibition in Non-small Cell Lung Cancer. Biomolecules. 2020;10(12). PubMed PMID: 33302540. Pubmed Central PMCID: PMC7764320. Epub 2020/12/12. eng.
Li Y, Hu J, Guo D, Ma W, Zhang X, Zhang Z et al. LncRNA SNHG5 promotes the proliferation and cancer stem cell-like properties of HCC by regulating UPF1 and wnt-signaling pathway. Cancer Gene Ther. 2022;29(10):1373–83.
Ghasemian M, Poodineh J. A review on the biological roles of LncRNA PTCSC3 in cancerous and non-cancerous disorders. Cancer Cell Int. 2023;23(1):184. 2023/08/29.
Article CAS PubMed PubMed Central Google Scholar
Kahn RS, Sommer IE, Murray RM, Meyer-Lindenberg A, Weinberger DR, Cannon TD et al. Schizophrenia (primer). Nat Reviews: Disease Primers. 2015;1(1).
Cadigan KM, Nusse R. Wnt signaling: a common theme in animal development. Genes Dev. 1997;11(24):3286–305.
Article CAS PubMed Google Scholar
Miller JR, Moon RT. Signal transduction through beta-catenin and specification of cell fate during embryogenesis. Genes Dev. 1996;10(20):2527–39.
Article CAS PubMed Google Scholar
van der Wal T, van Amerongen R. Walking the tight wire between cell adhesion and WNT signalling: a balancing act for β-catenin. Open Biology. 2020;10(12):200267.
Article PubMed PubMed Central Google Scholar
Dong F, Jiang J, McSweeney C, Zou D, Liu L, Mao Y. Deletion of CTNNB1 in inhibitory circuitry contributes to autism-associated behavioral defects. Hum Mol Genet. 2016;25(13):2738–51.
CAS PubMed PubMed Central Google Scholar
Guo X, Yang J, Huang J, Chen Z, Wu X, Zhu L, et al. Influence of CTNNB1 rs2953 polymorphism on schizophrenia susceptibility in Chinese Han population through modifying miR-485 binding to CTNNB1. Genes. Brain Behav. 2019;18(4):e12524.
Smith A, Bourdeau I, Wang J, Bondy C. Expression of Catenin family members CTNNA1, CTNNA2, CTNNB1 and JUP in the primate prefrontal cortex and hippocampus. Mol Brain Res. 2005;135(1–2):225–31.
Article CAS PubMed Google Scholar
Beasley C, Cotter D, Khan N, Pollard C, Sheppard P, Varndell I, et al. Glycogen synthase kinase-3β immunoreactivity is reduced in the prefrontal cortex in schizophrenia. Neurosci Lett. 2001;302(2–3):117–20.
Article CAS PubMed Google Scholar
Alimohamad H, Rajakumar N, Seah Y-H, Rushlow W. Antipsychotics alter the protein expression levels of β-catenin and GSK-3 in the rat medial prefrontal cortex and striatum. Biol Psychiatry. 2005;57(5):533–42.
Article CAS PubMed Google Scholar
Zhuang W, Ye T, Wang W, Song W, Tan T. CTNNB1 in neurodevelopmental disorders. Front Psychiatry. 2023;14:1143328.
Article PubMed PubMed Central Google Scholar
Levchenko A, Davtian S, Freylichman O, Zagrivnaya M, Kostareva A, Malashichev Y. Beta-catenin in schizophrenia: possibly deleterious novel mutation. Psychiatry Res. 2015;228(3):843–8.
Article CAS PubMed Google Scholar
Xia S, Ji R, Zhan W. Long noncoding RNA papillary thyroid carcinoma susceptibility candidate 3 (PTCSC3) inhibits proliferation and invasion of glioma cells by suppressing the Wnt/β-catenin signaling pathway. BMC Neurol. 2017;17(1):30. PubMed PMID: 28187755. Pubmed Central PMCID: PMC5303216. Epub 2017/02/12. eng.
Article PubMed PubMed Central Google Scholar
Gibbons AS, Thomas EA, Scarr E, Dean B. Low density lipoprotein receptor-related protein and apolipoprotein E expression is altered in Schizophrenia. Front Psychiatry. 2010;1:19. PubMed PMID: 21423430. Pubmed Central PMCID: PMC3059617. Epub 2010/01/01. eng.
Wang X, Lu X, Geng Z, Yang G, Shi Y. LncRNA PTCSC3/miR-574-5p governs Cell Proliferation and Migration of Papillary thyroid carcinoma via Wnt/β-Catenin signaling. J Cell Biochem. 2017;118(12):4745–52. PubMed PMID: 28513866. Epub 2017/05/18. eng.
Comments (0)