M. ASIF, T. MUNEER, Energy supply, its demand and security issues for developed and emerging economies. Renew. Sustain. Energy Rev. 11(7), 1388–1413 (2007). https://doi.org/10.1016/j.rser.2005.12.004
A. Boudghene Stambouli, E. Traversa, Fuel cells, an alternative to standard sources of energy. Renew. Sustain. Energy Rev., 6(3), 295–304. https://doi.org/10.1016/S1364-0321(01)00015-6
R.L. Peters, Greenh. Effect Nat. Reserves BioScience. 35(11), 707–717 (1985). https://doi.org/10.2307/1310052
S.M. A.-A.Zumahi, M.K. Basher, N. Arobi, M.M. Rahman, A.M. Tawfeek, M.A.R. Akand, M.M. Rahman, M. Nur-E-Alam, M.K. Hossain, High-efficiency silicon solar cells designed on experimentally achieved nano-engineered low-reflective silicon surface. J. Opt. (2024). https://doi.org/10.1007/s12596-023-01574-3
F. Fadakar Masouleh, N. Das, S. Rozati, Nano-Structured gratings for Improved Light absorption efficiency in Solar cells. Energies. 9(9), 756 (2016). https://doi.org/10.3390/en9090756
M.H. Miah, M.U. Khandaker, M.B. Rahman, M. Nur-E-Alam, M.A. Islam, Band gap tuning of perovskite solar cells for enhancing the efficiency and stability: issues and prospects. RSC Adv. 14(23), 15876–15906 (2024). https://doi.org/10.1039/D4RA01640H
M.H. Miah, M.B. Rahman, M. Nur-E‐Alam, N. Das, N.B. Soin, S.F.W.M. Hatta, M.A. Islam, Understanding the degradation factors, mechanism and initiatives for highly efficient Perovskite Solar cells. ChemNanoMat. 9(3) (2023). https://doi.org/10.1002/cnma.202200471
M.A. Islam, I.A. Siddiquee, Y.A. Wahab, S.F.W. Hatta, J.M. Imam, F.W. Low, A. Ahamed, M.N.-E. Alam, Spin-coated high mobility MoO3 thin film for designing highly efficient lead-free perovskite solar cells. Ceram. Int. 50(13), 23847–23854 (2024). https://doi.org/10.1016/j.ceramint.2024.04.111
A.B. Stambouli, E. Traversa, Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew. Sustain. Energy Rev. 6(5), 433–455 (2002). https://doi.org/10.1016/S1364-0321(02)00014-X
S. Hossain, A.M. Abdalla, S.N.B. Jamain, J.H. Zaini, A.K. Azad, A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renew. Sustain. Energy Rev. 79, 750–764 (2017). https://doi.org/10.1016/j.rser.2017.05.147
K. Eguchi, Fuel flexibility in power generation by solid oxide fuel cells. Solid State Ionics. 152–153, 411–416 (2002). https://doi.org/10.1016/S0167-2738(02)00351-X
R.M. Ormerod, Solid oxide fuel cells. Chem. Soc. Rev. 32(1), 17–28 (2003). https://doi.org/10.1039/b105764m
S. Hossain, A.M. Abdalla, J.H. Zaini, C.D. Savaniu, J.T.S. Irvine, A.K. Azad, Highly dense and novel proton conducting materials for SOFC electrolyte. Int. J. Hydrog. Energy. 42(44), 27308–27322 (2017). https://doi.org/10.1016/j.ijhydene.2017.09.067
S. Badwal, Stability of solid oxide fuel cell components. Solid State Ionics. 143(1), 39–46 (2001). https://doi.org/10.1016/S0167-2738(01)00831-1
M. Biswas, K.C. Sadanala, Electrolyte materials for solid oxide fuel cell. J. Powder Metall. Min. 02(04) (2013). https://doi.org/10.4172/2168-9806.1000117
K.D. Kreuer, P.-C. Oxides, Annu. Rev. Mater. Sci. 33(1), 333–359 (2003). https://doi.org/10.1146/annurev.matsci.33.022802.091825
S. Hossain, M.S. Islam, S.A. Lopa, A.M. Abdalla, A.K. Azad, Structural characterization of Multi-doped Barium Cerate as Perovskite for Solid Oxide fuel cells. Eng. Adv. 3(5), 387–394 (2023). https://doi.org/10.26855/ea.2023.10.001
K. Katahira, Y. Kohchi, T. Shimura, H. Iwahara, Protonic conduction in Zr-substituted BaCeO3. Solid State Ionics. 138(1–2), 91–98 (2000). https://doi.org/10.1016/S0167-2738(00)00777-3
D.A. Stevenson, N. Jiang, R.M. Buchanan, F.E.G. Henn, Characterization of Gd, Yb and Nd doped barium cerates as proton conductors. Solid State Ionics. 62(3–4), 279–285 (1993). https://doi.org/10.1016/0167-2738(93)90383-E
A.K. Azad, A. Kruth, J.T.S. Irvine, Influence of atmosphere on redox structure of BaCe0.9Y0.1O2.95 – insight from neutron diffraction study. Int. J. Hydrog. Energy. 39(24), 12804–12811 (2014). https://doi.org/10.1016/j.ijhydene.2014.05.080
A.K. Azad, D.D.Y. Setsoafia, L.C. Ming, P.M.I. Petra, Synthesis and characterization of high density and low temperature sintered proton conductor BaCe0.5Zr0.35In0.1Zn0.05O3-d. Adv. Mater. Res. 1098, 104–109 (2015)
Y. Yamazaki, R. Hernandez-Sanchez, S.M. Haile, High total Proton Conductivity in large-grained yttrium-doped Barium Zirconate. Chem. Mater. 21(13), 2755–2762 (2009). https://doi.org/10.1021/cm900208w
M. Liu, J. Gao, X. Liu, G. Meng, High performance of anode supported BaZr0.1Ce0.7Y0.2O3 – δ(BZCY) electrolyte cell for IT-SOFC. Int. J. Hydrog. Energy. 36(21), 13741–13745 (2011). https://doi.org/10.1016/j.ijhydene.2011.07.087
A. Afif, N. Radenahmad, C.M. Lim, M.I. Petra, M.A. Islam, S.M.H. Rahman, S. Eriksson, A.K. Azad, Structural study and proton conductivity in BaCe0.7Zr0.25 – xYxZn0.05O3 (x = 0.05, 0.1, 0.15, 0.2 & 0.25). Int. J. Hydrog. Energy. 41(27), 11823–11831 (2016). https://doi.org/10.1016/j.ijhydene.2016.02.135
S. Hossain, A.M. Abdalla, N. Radenahmad, A.K.M. Zakaria, J.H. Zaini, S.M.H. Rahman, S.G. Eriksson, J.T.S. Irvine, A.K. Azad, Highly dense and chemically stable proton conducting electrolyte sintered at 1200°C. Int. J. Hydrog. Energy. 43(2), 894–907 (2018). https://doi.org/10.1016/j.ijhydene.2017.11.111
N.T.Q. Nguyen, H.H. Yoon, Preparation and evaluation of BaZr0.1Ce0.7Y0.1Yb0.1O3 – δ (BZCYYb) electrolyte and BZCYYb-based solid oxide fuel cells. J. Power Sources. 231, 213–218 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.011
E. Gorbova, V. Maragou, D. Medvedev, A. Demin, P. Tsiakaras, Influence of sintering additives of transition metals on the properties of gadolinium-doped barium cerate. Solid State Ionics. 179(21–26), 887–890 (2008). https://doi.org/10.1016/j.ssi.2008.02.065
R.A. Afre, D. Pugliese, Perovskite Solar Cells: a review of the latest advances in materials, fabrication techniques, and Stability Enhancement Strategies. Micromachines. 15(2), 192 (2024). https://doi.org/10.3390/mi15020192
M. Dhonde, K. Sahu, V.V.S. Murty, Cu-doped TiO2 nanoparticles/graphene composites for efficient dye-sensitized solar cells. Sol. Energy. 220, 418–424 (2021). https://doi.org/10.1016/j.solener.2021.03.072
C. Liu, X. Sun, Y. Yang, O.A. Syzgantseva, M.A. Syzgantseva, B. Ding, N. Shibayama, H. Kanda, F. Fadaei Tirani, R. Scopelliti, S. Zhang, K.G. Brooks, S. Dai, G. Cui, M.D. Irwin, Z. Shao, Y. Ding, Z. Fei, P.J. Dyson, M.K. Nazeeruddin, Retarding solid-state reactions enable efficient and stable all-inorganic perovskite solar cells and modules. Sci. Adv. 9(21) (2023). https://doi.org/10.1126/sciadv.adg0087
X. Yin, B. Wang, M. He, T. He, Facile synthesis of ZnO nanocrystals via a solid state reaction for high performance plastic dye-sensitized solar cells. Nano Res. 5(1), 1–10 (2012). https://doi.org/10.1007/s12274-011-0178-X
Article MathSciNet Google Scholar
L. Zhang, Y. Wang, B. Liu, J. Wang, G. Han, Y. Zhang, Characterization and property of magnetic ferrite ceramics with interesting multilayer structure prepared by solid-state reaction. Ceram. Int. 47(8), 10927–10939 (2021). https://doi.org/10.1016/j.ceramint.2020.12.212
S. Hossain, G. Dev, M.S. Aktar, M.K. Hasan, A.K.M. Zakaria, T.K. Datta, I. Kamal, S. Yunus, Preparation and Structural Properties of ZnAl x Fe 2 – x O 4 Spinel Oxide. 203–209 (2016)
M. Miyake, M. Iwami, M. Takeuchi, S. Nishimoto, Y. Kameshima, Electrochemical performance of Ni0.8Cu0.2/Ce0.8Gd0.2O1.9 cermet anodes with functionally graded structures for intermediate-temperature solid oxide fuel cell fueled with syngas. J. Power Sources. 390, 181–185 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.051
A.I. Klyndyuk, D.S. Kharytonau, M. Mosiałek, E.A. Chizhova, A. Komenda, R.P. Socha, M. Zimowska, Double substituted NdBa(Fe,Co,Cu)2O5 + δ layered perovskites as cathode materials for intermediate-temperature solid oxide fuel cells – correlation between structure and electrochemical properties. Electrochim. Acta. 411, 140062 (2022). https://doi.org/10.1016/j.electacta.2022.140062
D.W. Barowy, D. Gochev, E.D. Berger, CheckCell. Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages & Applications - OOPSLA ’14, 507–523 (2014). https://doi.org/10.1145/2660193.2660207
M. Azrour, M. Azdouz, B. Manoun, R. Essehli, S. Benmokhtar, L. Bih, L. El Ammari, A. Ezzahi, A. Ider, A.A. Hou, Rietveld refinements and vibrational spectroscopic studies of Na1 – xKxPb4(PO4)3 lacunar apatites (0 ≤ x ≤ 1). J. Phys. Chem. Solids. 72(11), 1199–1205 (2011). https://doi.org/10.1016/j.jpcs.2011.06.013
H. Zhang, J. Qiao, G. Li, S. Li, G. Wang, J. Wang, Y. Song, Preparation of Ce4+-doped BaZrO3 by hydrothermal method and application in dual-frequent sonocatalytic degradation of norfloxacin in aqueous solution. Ultrason. Sonochem. 42, 356–367 (2018). https://doi.org/10.1016/j.ultsonch.2017.11.043
T. Berger, H. Drexler, T. Ruh, L. Lindenthal, F. Schrenk, J. Bock, R. Rameshan, K. Föttinger, J. Irrgeher, C. Rameshan, Cu-Doped Perovskite-Type oxides: a structural deep dive and examination of their exsolution Behaviour Influenced by B-Site Doping. Catal. Today. 437, 114787 (2024). https://doi.org/10.1016/j.cattod.2024.114787
Comments (0)