Structural and morphological properties with thermal stability of BaZr0.2Ce0.8−xCuxO3−δ perovskite as a novel compound for solar cell and SOFC application

M. ASIF, T. MUNEER, Energy supply, its demand and security issues for developed and emerging economies. Renew. Sustain. Energy Rev. 11(7), 1388–1413 (2007). https://doi.org/10.1016/j.rser.2005.12.004

Article  Google Scholar 

A. Boudghene Stambouli, E. Traversa, Fuel cells, an alternative to standard sources of energy. Renew. Sustain. Energy Rev., 6(3), 295–304. https://doi.org/10.1016/S1364-0321(01)00015-6

R.L. Peters, Greenh. Effect Nat. Reserves BioScience. 35(11), 707–717 (1985). https://doi.org/10.2307/1310052

Article  Google Scholar 

S.M. A.-A.Zumahi, M.K. Basher, N. Arobi, M.M. Rahman, A.M. Tawfeek, M.A.R. Akand, M.M. Rahman, M. Nur-E-Alam, M.K. Hossain, High-efficiency silicon solar cells designed on experimentally achieved nano-engineered low-reflective silicon surface. J. Opt. (2024). https://doi.org/10.1007/s12596-023-01574-3

Article  Google Scholar 

F. Fadakar Masouleh, N. Das, S. Rozati, Nano-Structured gratings for Improved Light absorption efficiency in Solar cells. Energies. 9(9), 756 (2016). https://doi.org/10.3390/en9090756

Article  Google Scholar 

M.H. Miah, M.U. Khandaker, M.B. Rahman, M. Nur-E-Alam, M.A. Islam, Band gap tuning of perovskite solar cells for enhancing the efficiency and stability: issues and prospects. RSC Adv. 14(23), 15876–15906 (2024). https://doi.org/10.1039/D4RA01640H

Article  ADS  Google Scholar 

M.H. Miah, M.B. Rahman, M. Nur-E‐Alam, N. Das, N.B. Soin, S.F.W.M. Hatta, M.A. Islam, Understanding the degradation factors, mechanism and initiatives for highly efficient Perovskite Solar cells. ChemNanoMat. 9(3) (2023). https://doi.org/10.1002/cnma.202200471

M.A. Islam, I.A. Siddiquee, Y.A. Wahab, S.F.W. Hatta, J.M. Imam, F.W. Low, A. Ahamed, M.N.-E. Alam, Spin-coated high mobility MoO3 thin film for designing highly efficient lead-free perovskite solar cells. Ceram. Int. 50(13), 23847–23854 (2024). https://doi.org/10.1016/j.ceramint.2024.04.111

Article  Google Scholar 

A.B. Stambouli, E. Traversa, Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew. Sustain. Energy Rev. 6(5), 433–455 (2002). https://doi.org/10.1016/S1364-0321(02)00014-X

Article  Google Scholar 

S. Hossain, A.M. Abdalla, S.N.B. Jamain, J.H. Zaini, A.K. Azad, A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renew. Sustain. Energy Rev. 79, 750–764 (2017). https://doi.org/10.1016/j.rser.2017.05.147

Article  Google Scholar 

K. Eguchi, Fuel flexibility in power generation by solid oxide fuel cells. Solid State Ionics. 152–153, 411–416 (2002). https://doi.org/10.1016/S0167-2738(02)00351-X

Article  Google Scholar 

R.M. Ormerod, Solid oxide fuel cells. Chem. Soc. Rev. 32(1), 17–28 (2003). https://doi.org/10.1039/b105764m

Article  Google Scholar 

S. Hossain, A.M. Abdalla, J.H. Zaini, C.D. Savaniu, J.T.S. Irvine, A.K. Azad, Highly dense and novel proton conducting materials for SOFC electrolyte. Int. J. Hydrog. Energy. 42(44), 27308–27322 (2017). https://doi.org/10.1016/j.ijhydene.2017.09.067

Article  ADS  Google Scholar 

S. Badwal, Stability of solid oxide fuel cell components. Solid State Ionics. 143(1), 39–46 (2001). https://doi.org/10.1016/S0167-2738(01)00831-1

Article  Google Scholar 

M. Biswas, K.C. Sadanala, Electrolyte materials for solid oxide fuel cell. J. Powder Metall. Min. 02(04) (2013). https://doi.org/10.4172/2168-9806.1000117

K.D. Kreuer, P.-C. Oxides, Annu. Rev. Mater. Sci. 33(1), 333–359 (2003). https://doi.org/10.1146/annurev.matsci.33.022802.091825

Article  ADS  Google Scholar 

S. Hossain, M.S. Islam, S.A. Lopa, A.M. Abdalla, A.K. Azad, Structural characterization of Multi-doped Barium Cerate as Perovskite for Solid Oxide fuel cells. Eng. Adv. 3(5), 387–394 (2023). https://doi.org/10.26855/ea.2023.10.001

Article  Google Scholar 

K. Katahira, Y. Kohchi, T. Shimura, H. Iwahara, Protonic conduction in Zr-substituted BaCeO3. Solid State Ionics. 138(1–2), 91–98 (2000). https://doi.org/10.1016/S0167-2738(00)00777-3

Article  Google Scholar 

D.A. Stevenson, N. Jiang, R.M. Buchanan, F.E.G. Henn, Characterization of Gd, Yb and Nd doped barium cerates as proton conductors. Solid State Ionics. 62(3–4), 279–285 (1993). https://doi.org/10.1016/0167-2738(93)90383-E

Article  Google Scholar 

A.K. Azad, A. Kruth, J.T.S. Irvine, Influence of atmosphere on redox structure of BaCe0.9Y0.1O2.95 – insight from neutron diffraction study. Int. J. Hydrog. Energy. 39(24), 12804–12811 (2014). https://doi.org/10.1016/j.ijhydene.2014.05.080

Article  ADS  Google Scholar 

A.K. Azad, D.D.Y. Setsoafia, L.C. Ming, P.M.I. Petra, Synthesis and characterization of high density and low temperature sintered proton conductor BaCe0.5Zr0.35In0.1Zn0.05O3-d. Adv. Mater. Res. 1098, 104–109 (2015)

Article  Google Scholar 

Y. Yamazaki, R. Hernandez-Sanchez, S.M. Haile, High total Proton Conductivity in large-grained yttrium-doped Barium Zirconate. Chem. Mater. 21(13), 2755–2762 (2009). https://doi.org/10.1021/cm900208w

Article  Google Scholar 

M. Liu, J. Gao, X. Liu, G. Meng, High performance of anode supported BaZr0.1Ce0.7Y0.2O3 – δ(BZCY) electrolyte cell for IT-SOFC. Int. J. Hydrog. Energy. 36(21), 13741–13745 (2011). https://doi.org/10.1016/j.ijhydene.2011.07.087

Article  ADS  Google Scholar 

A. Afif, N. Radenahmad, C.M. Lim, M.I. Petra, M.A. Islam, S.M.H. Rahman, S. Eriksson, A.K. Azad, Structural study and proton conductivity in BaCe0.7Zr0.25 – xYxZn0.05O3 (x = 0.05, 0.1, 0.15, 0.2 & 0.25). Int. J. Hydrog. Energy. 41(27), 11823–11831 (2016). https://doi.org/10.1016/j.ijhydene.2016.02.135

Article  ADS  Google Scholar 

S. Hossain, A.M. Abdalla, N. Radenahmad, A.K.M. Zakaria, J.H. Zaini, S.M.H. Rahman, S.G. Eriksson, J.T.S. Irvine, A.K. Azad, Highly dense and chemically stable proton conducting electrolyte sintered at 1200°C. Int. J. Hydrog. Energy. 43(2), 894–907 (2018). https://doi.org/10.1016/j.ijhydene.2017.11.111

Article  ADS  Google Scholar 

N.T.Q. Nguyen, H.H. Yoon, Preparation and evaluation of BaZr0.1Ce0.7Y0.1Yb0.1O3 – δ (BZCYYb) electrolyte and BZCYYb-based solid oxide fuel cells. J. Power Sources. 231, 213–218 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.011

Article  Google Scholar 

E. Gorbova, V. Maragou, D. Medvedev, A. Demin, P. Tsiakaras, Influence of sintering additives of transition metals on the properties of gadolinium-doped barium cerate. Solid State Ionics. 179(21–26), 887–890 (2008). https://doi.org/10.1016/j.ssi.2008.02.065

Article  Google Scholar 

R.A. Afre, D. Pugliese, Perovskite Solar Cells: a review of the latest advances in materials, fabrication techniques, and Stability Enhancement Strategies. Micromachines. 15(2), 192 (2024). https://doi.org/10.3390/mi15020192

Article  Google Scholar 

M. Dhonde, K. Sahu, V.V.S. Murty, Cu-doped TiO2 nanoparticles/graphene composites for efficient dye-sensitized solar cells. Sol. Energy. 220, 418–424 (2021). https://doi.org/10.1016/j.solener.2021.03.072

Article  ADS  Google Scholar 

C. Liu, X. Sun, Y. Yang, O.A. Syzgantseva, M.A. Syzgantseva, B. Ding, N. Shibayama, H. Kanda, F. Fadaei Tirani, R. Scopelliti, S. Zhang, K.G. Brooks, S. Dai, G. Cui, M.D. Irwin, Z. Shao, Y. Ding, Z. Fei, P.J. Dyson, M.K. Nazeeruddin, Retarding solid-state reactions enable efficient and stable all-inorganic perovskite solar cells and modules. Sci. Adv. 9(21) (2023). https://doi.org/10.1126/sciadv.adg0087

X. Yin, B. Wang, M. He, T. He, Facile synthesis of ZnO nanocrystals via a solid state reaction for high performance plastic dye-sensitized solar cells. Nano Res. 5(1), 1–10 (2012). https://doi.org/10.1007/s12274-011-0178-X

Article  MathSciNet  Google Scholar 

L. Zhang, Y. Wang, B. Liu, J. Wang, G. Han, Y. Zhang, Characterization and property of magnetic ferrite ceramics with interesting multilayer structure prepared by solid-state reaction. Ceram. Int. 47(8), 10927–10939 (2021). https://doi.org/10.1016/j.ceramint.2020.12.212

Article  Google Scholar 

S. Hossain, G. Dev, M.S. Aktar, M.K. Hasan, A.K.M. Zakaria, T.K. Datta, I. Kamal, S. Yunus, Preparation and Structural Properties of ZnAl x Fe 2 – x O 4 Spinel Oxide. 203–209 (2016)

M. Miyake, M. Iwami, M. Takeuchi, S. Nishimoto, Y. Kameshima, Electrochemical performance of Ni0.8Cu0.2/Ce0.8Gd0.2O1.9 cermet anodes with functionally graded structures for intermediate-temperature solid oxide fuel cell fueled with syngas. J. Power Sources. 390, 181–185 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.051

Article  ADS  Google Scholar 

A.I. Klyndyuk, D.S. Kharytonau, M. Mosiałek, E.A. Chizhova, A. Komenda, R.P. Socha, M. Zimowska, Double substituted NdBa(Fe,Co,Cu)2O5 + δ layered perovskites as cathode materials for intermediate-temperature solid oxide fuel cells – correlation between structure and electrochemical properties. Electrochim. Acta. 411, 140062 (2022). https://doi.org/10.1016/j.electacta.2022.140062

Article  Google Scholar 

D.W. Barowy, D. Gochev, E.D. Berger, CheckCell. Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages & Applications - OOPSLA ’14, 507–523 (2014). https://doi.org/10.1145/2660193.2660207

M. Azrour, M. Azdouz, B. Manoun, R. Essehli, S. Benmokhtar, L. Bih, L. El Ammari, A. Ezzahi, A. Ider, A.A. Hou, Rietveld refinements and vibrational spectroscopic studies of Na1 – xKxPb4(PO4)3 lacunar apatites (0 ≤ x ≤ 1). J. Phys. Chem. Solids. 72(11), 1199–1205 (2011). https://doi.org/10.1016/j.jpcs.2011.06.013

Article  ADS  Google Scholar 

H. Zhang, J. Qiao, G. Li, S. Li, G. Wang, J. Wang, Y. Song, Preparation of Ce4+-doped BaZrO3 by hydrothermal method and application in dual-frequent sonocatalytic degradation of norfloxacin in aqueous solution. Ultrason. Sonochem. 42, 356–367 (2018). https://doi.org/10.1016/j.ultsonch.2017.11.043

Article  Google Scholar 

T. Berger, H. Drexler, T. Ruh, L. Lindenthal, F. Schrenk, J. Bock, R. Rameshan, K. Föttinger, J. Irrgeher, C. Rameshan, Cu-Doped Perovskite-Type oxides: a structural deep dive and examination of their exsolution Behaviour Influenced by B-Site Doping. Catal. Today. 437, 114787 (2024). https://doi.org/10.1016/j.cattod.2024.114787

Article 

Comments (0)

No login
gif