Hepatic vein Doppler ultrasound to estimate central venous pressure in mechanically ventilated children

Gan H, Cannesson M, Chandler JR, Ansermino JM (2013) Predicting fluid responsiveness in children: a systematic review. Anesth Analg 117:1380–1392. https://doi.org/10.1213/ANE.0B013E3182A9557E

Article  PubMed  Google Scholar 

De Backer D, Vincent JL (2018) Should we measure the central venous pressure to guide fluid management? Ten answers to 10 questions. Crit Care 22:1–6. https://doi.org/10.1186/S13054-018-1959-3

Article  Google Scholar 

Kai LD, Ting WX, Wei LD (2017) Association between elevated central venous pressure and outcomes in critically ill patients. Ann Intensive Care 7:1–7. https://doi.org/10.1186/S13613-017-0306-1

Article  Google Scholar 

Choi SJ, Ha EJ, Jhang WK, Park SJ (2018) Elevated central venous pressure is associated with increased mortality in pediatric septic shock patients. BMC Pediatr 18:1–6. https://doi.org/10.1186/S12887-018-1059-1

Article  Google Scholar 

Figg KK, Nemergut EC (2009) Error in central venous pressure measurement. Anesth Analg 108:1209–1211. https://doi.org/10.1213/ANE.0B013E318196482C

Article  PubMed  Google Scholar 

Davis MBH (2013) Pediatric central venous catheter management: a review of current practice. J Assoc Vasc Access 18:93–98. https://doi.org/10.1016/J.JAVA.2013.04.002

Article  Google Scholar 

Natori H, Tamaki S, Kira S (1979) Ultrasonographic evaluation of ventilatory effect on inferior vena caval configuration. Am Rev Respir Dis 120:421–427. https://doi.org/10.1164/ARRD.1979.120.2.421

Article  CAS  PubMed  Google Scholar 

Chattopadhyay A, Lodha R (2017) Can inferior vena cava measurement be an alternative to central venous pressure measurement? Indian J Pediatr 84:733–734. https://doi.org/10.1007/S12098-017-2443-9

Article  PubMed  Google Scholar 

Ruge M, Marhefka GD (2022) IVC measurement for the noninvasive evaluation of central venous pressure. J Echocardiogr 20:133–143. https://doi.org/10.1007/S12574-022-00569-6

Article  PubMed  Google Scholar 

Beaubien-Souligny W, Rola P, Haycock K et al (2020) Quantifying systemic congestion with point-of-care ultrasound: development of the venous excess ultrasound grading system. Ultrasound Journal 12:1–12. https://doi.org/10.1186/S13089-020-00163-W

Article  Google Scholar 

Menéndez-Suso JJ, Rodríguez-Álvarez D, Sánchez-Martín M (2023) Feasibility and utility of the venous excess ultrasound score to detect and grade central venous pressure elevation in critically ill children. J Ultrasound Med 42:211–220. https://doi.org/10.1002/JUM.16057

Article  PubMed  Google Scholar 

Nagueh SF, Kopelen HA, Zoghbi WA (1996) Relation of mean right atrial pressure to echocardiographic and Doppler parameters of right atrial and right ventricular function. Circulation 93:1160–1169. https://doi.org/10.1161/01.CIR.93.6.1160

Article  CAS  PubMed  Google Scholar 

Ritter S, Tani LY, Shaddy RE et al (2000) Can Doppler systemic venous flow indices predict central venous pressure in children? Echocardiography 17:127–132. https://doi.org/10.1111/J.1540-8175.2000.TB01113.X

Article  CAS  PubMed  Google Scholar 

Weber MD, Conlon T, Woods-Hill C et al (2022) Retrospective assessment of patient and catheter characteristics associated with malpositioned central venous catheters in pediatric patients. Pediatr Crit Care Med 23:192–200. https://doi.org/10.1097/PCC.0000000000002882

Article  PubMed  Google Scholar 

de Souza TH, Giatti MP, Nogueira RJN et al (2020) Inferior vena cava ultrasound in children: comparing two common assessment methods. Pediatr Crit Care Med 21:E186–E191. https://doi.org/10.1097/PCC.0000000000002240

Article  PubMed  Google Scholar 

Ng L, Khine H, Taragin BH et al (2013) Does bedside sonographic measurement of the inferior vena cava diameter correlate with central venous pressure in the assessment of intravascular volume in children? Pediatr Emerg Care 29:337–341. https://doi.org/10.1097/PEC.0B013E31828512A5

Article  PubMed  Google Scholar 

Garcia RU, Meert KL, Safa R, Aggarwal S (2021) Inferior vena cava collapsibility index to assess central venous pressure in perioperative period following cardiac surgery in children. Pediatr Cardiol 42:560–568. https://doi.org/10.1007/S00246-020-02514-9

Article  PubMed  Google Scholar 

Iwamoto Y, Tamai A, Kohno K et al (2011) Usefulness of respiratory variation of inferior vena cava diameter for estimation of elevated central venous pressure in children with cardiovascular disease. Circ J 75:1209–1214. https://doi.org/10.1253/CIRCJ.CJ-10-0690

Article  PubMed  Google Scholar 

Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160. https://doi.org/10.1177/096228029900800204

Article  CAS  PubMed  Google Scholar 

Lehmann EL (2006) Nonparametrics: statistical methods based on ranks. Springer, New York

Google Scholar 

Advanced Life Support Group (2016) Advanced paediatric life support: a practical approach to emergencies, 6th edn. Wiley-Blackwell, Manchester

Google Scholar 

Zhang H, Liu Y, Zhang Q et al (2022) Hepatic vein Doppler in critically ill patients: a reflection of central venous pressure or right ventricular systolic function? BMC Anesthesiol 22:1–9. https://doi.org/10.1186/S12871-022-01872-6

Article  Google Scholar 

de Carioca FL, de Souza FM, de Souza TB et al (2023) Point-of-care ultrasonography to predict fluid responsiveness in children: a systematic review and meta-analysis. Pediatric Anesthesia 33:24–37. https://doi.org/10.1111/PAN.14574

Article  PubMed  Google Scholar 

Orso D, Paoli I, Piani T et al (2018) Accuracy of ultrasonographic measurements of inferior vena cava to determine fluid responsiveness: a systematic review and meta-analysis. J Intensive Care Med 35:354–363. https://doi.org/10.1177/0885066617752308

Article  PubMed  Google Scholar 

Mercolini F, Di Leo V, Bordin G et al (2021) Central venous pressure estimation by ultrasound measurement of inferior vena cava and aorta diameters in pediatric critical patients: an observational study. Pediatr Crit Care Med 22:E1–E9. https://doi.org/10.1097/PCC.0000000000002526

Article  PubMed  Google Scholar 

Comments (0)

No login
gif