Bio-inspired circular soft actuators for simulating defecation process of human rectum

Jiao Z, Hu Z, Dong Z, Tang W, Yang H, Zou J. Reprogrammable Metamaterial Processors for Soft Machines. Adv Sci. 2024;11:2305501.

Article  CAS  Google Scholar 

Peng Y, Nabae H, Funabora Y, Suzumori K. controlling a peristaltic robot inspired by inchworms. Biomimet Intell Robot. 2024;4:100146.

Article  Google Scholar 

Shen Y, Chen M, Skelton RE. Markov data-based reference tracking control to tensegrity morphing airfoils. Eng Struct. 2023;291:116430.

Article  Google Scholar 

Zhao L, Wu Y, Blanchet J, et al. Soft lattice modules that behave independently and collectively. IEEE Robot Automat Lett. 2022;7:5942–9.

Article  Google Scholar 

Mao Z, Hosoya N, Maeda S. Flexible electrohydrodynamic fluid-driven valveless water pump via immiscible interface. Cyborg Bionic Syst. 2024;5:0091.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kong D, Tanimura R, Wang F, Zhang K, Kurosawa MK, Aoyagi M. Swimmer with submerged SiO2/Al/LiNbO 3 surface acoustic wave propulsion system. Biomimet Intell Robot. 2024;4:100159.

Article  Google Scholar 

Bai X, Peng Y, Li D, Liu Z, Mao Z. Novel soft robotic finger model driven by electrohydrodynamic (EHD) pump. J Zhejiang Univ-SCI A. 2024. https://doi.org/10.1631/jzus.A2300479.

Article  Google Scholar 

Mao Z, Peng Y, Hu C, Ding R, Yamada Y, Maeda S. Soft computing-based predictive modeling of flexible electrohydrodynamic pumps. Biomimet Intell Robot. 2023;3:100114.

Article  Google Scholar 

Wiranata A, Ishii Y, Hosoya N, Maeda S. Simple and reliable fabrication method for polydimethylsiloxane dielectric elastomer actuators using carbon nanotube powder electrodes. Adv Eng Mater. 2021;23:2001181.

Article  CAS  Google Scholar 

Thongking W, Wiranata A, Minaminosono A, Mao Z, Maeda S. Soft robotic gripper based on multi-layers of dielectric elastomer actuators. J Robot Mechatron. 2021;33:968–74.

Article  Google Scholar 

Zhang C, Chen J, Li J, Peng Y, Mao Z. Large language models for human-robot interaction: a review. Biomimet Intell Robot. 2023. https://doi.org/10.1016/j.birob.2023.100131.

Article  Google Scholar 

Cianchetti M, Laschi C, Menciassi A, Dario P. Biomedical applications of soft robotics. Nat Rev Mater. 2018;3:143–53.

Article  Google Scholar 

Roche ET, Horvath MA, Wamala I, Alazmani A, Song S-E, Whyte W, et al. Soft robotic sleeve supports heart function. Sci Transl Med. 2017. https://doi.org/10.1126/scitranslmed.aaf3925.

Article  PubMed  Google Scholar 

Xu J, Xu B, Yue H, Xie Z, Tian Y, Yang F. Origami-inspired bionic soft robot stomach with self-powered sensing. Adv Healthcare Mat. 2023. https://doi.org/10.1002/adhm.202302761.

Article  Google Scholar 

Hashem R, Kazemi S, Stommel M, Cheng LK, Xu W. SoRSS: a soft robot for bio-mimicking stomach anatomy and motility, soft. Robotics. 2023;10:504–16.

Google Scholar 

Bhattacharya D, Ali SJ, Cheng LK, Xu W. RoSE: a robotic soft esophagus for endoprosthetic stent testing, Soft. Robotics. 2021;8:397–415.

Google Scholar 

Zrinscak D, Lorenzon L, Maselli M, Cianchetti M. Soft robotics for physical simulators, artificial organs and implantable assistive devices. Progress Biomed Eng. 2023;5:012002.

Article  Google Scholar 

Wenzl HH, Fine KD, Schiller LR, Fordtran JS. Determinants of decreased fecal consistency in patients with diarrhea. Gastroenterology. 1995;108:1729–38.

Article  CAS  PubMed  Google Scholar 

van der Wilt AA, Breukink SO, Sturkenboom R, Stassen LP, Baeten CG, Melenhorst J. The artificial bowel sphincter in the treatment of fecal incontinence, long-term complications. Dis Colon Rectum. 2020;63:1134–41.

Article  PubMed  Google Scholar 

Z. Mao, S. Suzuki, H. Nabae, S. Miyagawa, K. Suzumori, S. Maeda, Machine-Learning-enhanced soft robotic system inspired by rectal functions for investigating fecal incontinence, arXiv preprint arXiv:240410999, (2024).

S. Miyagawa, Y.A. Seong, Z. Mao, T. Horii, H. Nabae, S. Maeda, et al., What to Do When the Requirements Are Unknown?---Development of a Simulator for Excretory Care, (2023).

Regadas FSP, Murad-Regadas SM, Lima DM, Silva FR, Barreto RG, Souza MH, et al. Anal canal anatomy showed by three-dimensional anorectal ultrasonography. Surg Endosc. 2007;21:2207–11.

Article  PubMed  Google Scholar 

Kenngott H, Wünscher J, Wagner M, Preukschas A, Wekerle A, Neher P, et al. OpenHELP (Heidelberg laparoscopy phantom): development of an open-source surgical evaluation and training tool. Surg Endosc. 2015;29:3338–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Christensen MB, Oberg K, Wolchok JC. Tensile properties of the rectal and sigmoid colon: a comparative analysis of human and porcine tissue. Springerplus. 2015;4:1–10.

Article  Google Scholar 

Horvat N, Carlos Tavares Rocha C, Clemente Oliveira B, Petkovska I, Gollub MJ. MRI of rectal cancer: tumor staging, imaging techniques, and management. Radiographics. 2019;39:367–87.

Article  PubMed  Google Scholar 

Doll A, Heinrichs M, Goldschmidtboeing F, Schrag H-J, Hopt U, Woias P. A high performance bidirectional micropump for a novel artificial sphincter system. Sens Actuators A: Phiys. 2006;130:445–53.

Article  Google Scholar 

Stokes WE, Jayne DG, Alazmani A, Culmer PR. A biomechanical model of the human defecatory system to investigate mechanisms of continence. Proc Inst Mech Eng [H]. 2019;233:114–26.

Article  Google Scholar 

Luo Y, Higa M, Amae S, Takagi T, Yambe T, Okuyama T, et al. Preclinical development of SMA artificial anal sphincters. Minim Invasive Ther Allied Technol. 2006;15:241–5.

Article  PubMed  Google Scholar 

Tokoro K, Hashimoto T, Kobayashi H. Development of Robotic Defecation Simulator. J Robot Mech. 2014;26:377–87.

Article  Google Scholar 

Fattorini E, Brusa T, Gingert C, Hieber SE, Leung V, Osmani B, et al. Artificial muscle devices: innovations and prospects for fecal incontinence treatment. Ann Biomed Eng. 2016;44:1355–69.

Article  PubMed  PubMed Central  Google Scholar 

L. Maréchal, A. Granados, L. Ethapemi, S. Qiu, C. Kontovounisios, C. Norton, et al., Modelling of anal sphincter tone based on pneumatic and cable-driven mechanisms, 2017 IEEE World Haptics Conference (WHC), IEEE2017, pp. 376–81.

Hashem R, Kazemi S, Stommel M, Cheng LK, Xu W. A biologically inspired ring-shaped soft pneumatic actuator for large deformations, Soft. Robotics. 2022;9:807–19.

Google Scholar 

Mao Z, Asai Y, Yamanoi A, Seki Y, Wiranata A, Minaminosono A. Fluidic rolling robot using voltage-driven oscillating liquid. Smart Mater Struct. 2022;31:105006.

Article  Google Scholar 

Osgouei RH, Marechal L, Kontovounisios C, Bello F. Soft pneumatic actuator for rendering anal sphincter tone. IEEE Trans Haptics. 2020;13:183–90.

Article  PubMed  Google Scholar 

Dang Y, Stommel M, Cheng LK, Xu W. A soft ring-shaped actuator for radial contracting deformation: design and modeling. Soft Rob. 2019;6:444–54.

Article  Google Scholar 

Wang D, Wu X. Grasping performance analysis and comparison of multi-chamber ring-shaped soft grippers. Biomimetics. 2023;8:337.

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif