Sharma SD, Cushing SL, Papsin BC, Gordon KA (2020) Hearing and speech benefits of cochlear implantation in children: a review of the literature. Int J Pediatr Otorhinolaryngol 133:109984. https://doi.org/10.1016/j.ijporl.2020.109984. (PMID: 32203759)
Sennaroğlu L, Bajin MD (2017) Classification and Current Management of Inner Ear Malformations. Balkan Med J 34(5):397–411. https://doi.org/10.4274/balkanmedj.2017.0367. (PMCID: PMC563562)
Article PubMed PubMed Central Google Scholar
Ozkan HB, Cinar BC, Yucel E, Sennaroglu G, Sennaroglu L (2020) Audiological Performance in Children with Inner Ear Malformations Before and After Cochlear Implantation: A Cohort Study of 274 Patients. Clin Otolaryngol 46(1):154–160
Carvalho B, Hamerschmidt R, Wiemes G (2015) Intraoperative Neural Response Telemetry and Neural Recovery Function: a Comparative Study between Adults and Children. Int Arch Otorhinolaryngol 19(1):10–15. https://doi.org/10.1055/s-0034-1372509. (PMCID: PMC4392512)
Skidmore J, Ramekers D, Colesa DJ, Schvartz-Leyzac KC, Pfingst BE, He S (2022) A Broadly Applicable Method for Characterizing the Slope of the Electrically Evoked Compound Action Potential Amplitude Growth Function. Ear Hear 43(1):150–164 (PMID: 34241983; PMCID: PMC8674380)
Hughes ML (2013) Objective measures in cochlear implants, Chap 7. Plural Publising, Ireland, p 1
Cinar BC, Atas, Sennaroglu G, Sennaroglu L (2011) Evaluation of Objective Test Techniques in Cochlear Implant Users With Inner Ear Malformations. Otol Neurotol 32(7):1065–1074. https://doi.org/10.1097/MAO.0b013e318229d4af
Hughes ML (2013) Objective measures in cochlear implants, Chap 5. Plural Publishing, Ireland, p 1
He S, Teagle HFB, Buchman CA (2017) The electrically evoked compound action potential: from laboratory to clinic. Front NeuroSci 11:269609
Miller CA, Brown CJ, Abbas PJ, Chi S (2008) The clinical application of potentials evoked from the peripheral auditory system. Hear Res 242:184–197
Abbas PJ, Brown CJ, Shallop JK, Firszt JB, Hugges ML, Hong SH, Staller SJ (1999) Summary of results using the Nucleus CI24M implant to record the electrically evoked compound action potential. Ear Hear 20:45–59
Brown CJ, Hughes ML, Luk B, Abbas PJ, Wolaver A, Gervais J (2000) The relationship between EAP and EABR thresholds and levels used to program the Nucleus 24 speech processor: data from adults. Ear Hear 21(2):151–163
Coutinho da Silva J, Schmidt Goffi-Gomez MV, Tsuji RK, Bento R, Brito Neto R (2021) Is there any correlation between spread of Excitation Width and the Refractory properties of the auditory nerve in Cochlear Implant users? Audiol Neurootol 26(2):85–94 (PMID: 32998132)
Botros A, Psarros C (2010) Neural response telemetry reconsidered: II. The influence of neural population on the ECAP recovery function and refractoriness. Ear Hear 31:380–391
Rader T, Nachtigäller P, Linke T, Weißgerber T, Baumann U (2023) Exponential fitting of spread of excitation response measurements in cochlear implants. J Neurosci Methods. https://doi.org/10.1016/j.jneumeth.2023.109854
Bayrak S, Mutlu B, Kırkım G, Şerbetçioğlu B (2019) Examination and Comparison of Electrically Evoked Compound Action Potentials and electrically evoked auditory brainstem response results of children with cochlear implantation without inner ear anomaly. Turk Arch Otorhinolaryngol 57(2):81–85
Article PubMed PubMed Central Google Scholar
Gärtner L, lenar T, Büchner A (2018) Fine-grain recordings of the electrically evoked compound action potential amplitude growth function in cochlear implant recipients. Biomed Eng Online 17:140.
Article PubMed PubMed Central Google Scholar
Kocabay AP, Cinar BC, Batuk MO, Yarali M, Sennaroglu G (2022) Pediatric cochlear implant fitting parameters in inner ear malformation: Is it same with normal cochlea? Int J Pediatr Otorhinolaryngol 155:111084
Miller CA, Abbas PJ, Brown CJ (2000) An Improved Method of reducing stimulus artifact in the electrically evoked whole-nerve potential. Ear Hear 21(4):280–290
Dong Y, Briaire JJ, Stronks C, H., Frijns JHM (2022) Short- and long-latency components of the eCAP reveal different refractory properties. Hear Res 420:108522. https://doi.org/10.1016/J.HEARES.2022.108522
Biesheuvel JD, Briaire JJ, Kalkman RK, Frijns JHM (2022) The effect of stimulus level on excitation patterns of individual electrode contacts in cochlear implants. Hear Res 420:108490. https://doi.org/10.1016/J.HEARES.2022.108490
Hughes ML, Brown CJ, Abbas PJ, Wolaver AA, Gervais JP (2000) Comparison of EAP thresholds with MAP levels in the Nucleus 24 cochlear implant: data from children. Ear Hear 21(2):164–174
Thai-Van H, Truy E, Charasse B et al (2004) Modelling the relationship between psychophysical perception and electrically compound action potential threshold in young cochlear implant recipients: clinical implications for implant fitting. Clin Neurophysiol 115:2811Y24
van de Heyning P, Arauz SL, Atlas M, Baumgartner WD, Caversaccio M, Chester-Browne R, Estienne P, Gavilan J, Godey B, Gstöttner W, Han D, Hagen R, Kompis M, Kuzovkov V, Lassaletta L, Lefevre F, Li Y, Müller J, Parnes L, Skarzynski H (2016) Electrically evoked compound action potentials are different depending on the site of cochlear stimulation. Cochlear Implant Int 17(6):251–262. https://doi.org/10.1080/14670100.2016.1240427
Carvalho B, Richter Minhoto Wiemes G, Richter Minhoto Wiemes N, Hamerschmidt R (2022) Neural recovery function of the auditory nerve in cochlear implant surgery: comparison between different regions of the cochlea. Cochlear Implant Int 23(4):232–240. https://doi.org/10.1080/14670100.2022.2054564
Gordon KA, Ebinger KA, Gilden JE, Shapiro WH (2002) Neural response telemetry in 12- to 24-month-old children. Ann Otol Rhinol Laryngol Suppl 189(5 II):42–48. https://doi.org/10.1177/00034894021110S509
Nassiri AM, Yawn RJ, Gifford RH, Haynes DS, Roberts JB, Gilbane MS, Murfee J, Bennett ML (2019) Intraoperative electrically evoked compound action potential (ECAP) measurements in traditional and hearing preservation cochlear implantation. J Am Acad Audiol 30(10):918–926. https://doi.org/10.3766/JAAA.18052/ID/JR00918-35/BIB
Article PubMed PubMed Central Google Scholar
Cohen LT, Richardson LM, Saunders E, Cowan RSC (2003) Spatial spread of neural excitation in cochlear implant recipients: comparison of improved ECAP method and psychophysical forward masking. Hear Res 179(1–2):72–87. https://doi.org/10.1016/S0378-5955(03)00096-0
Söderqvist S, Lamminmäki S, Aarnisalo A, Hirvonen T, Sinkkonen ST, Sivonen V (2021) Intraoperative transimpedance and spread of excitation profile correlations with a lateral-wall cochlear implant electrode array. Hear Res 405:108235. https://doi.org/10.1016/J.HEARES.2021.108235
Brill S, Müller J, Hagen R, Möltner A, Brockmeier SJ, Stark T, Helbig S, Maurer J, Zahnert T, Zierhofer C, Nopp P, Anderson I, Strahl S (2009) Site of cochlear stimulation and its effect on electrically evoked compound action potentials using the MED-EL standard electrode array. Biomed Eng Online. https://doi.org/10.1186/1475-925X-8-40
Article PubMed PubMed Central Google Scholar
Polak M, Hodges AV, King JE, Balkany TJ (2004) Further prospective findings with compound action potentials from Nucleus 24 cochlear implants. Hear Res 188(1–2):104–116. https://doi.org/10.1016/S0378-5955(03)00309-5
He S, Shahsavarani BS, McFayden TC, Wang H, Gill KE, Xu L, Chao X, Luo J, Wang R, He N (2018) Responsiveness of the electrically stimulated cochlear nerve in children with cochlear nerve deficiency. Ear Hear 39(2):238–250. https://doi.org/10.1097/AUD.0000000000000467
Article PubMed PubMed Central Google Scholar
Shpak T, Berlin M, Luntz M (2004) Objective measurements of auditory nerve recovery function in nucleus CI 24 implantees in relation to subjective preference of stimulation rate. Acta Otolaryngol 124(6):679–683. https://doi.org/10.1080/0001648
Comments (0)