Hayes R, Ahmed A, Edge T, Zhang HF. Core-shell particles: preparation, fundamentals and applications in high performance liquid chromatography. J Chromatogr A. 2014;1357:36–52. https://doi.org/10.1016/j.chroma.2014.05.010.
Article CAS PubMed Google Scholar
Li Q, Li Z, Fu Y, Clarot I, Boudier A, Chen Z. Room-temperature growth of covalent organic frameworks as the stationary phase for open-tubular capillary electrochromatography. Analyst. 2021;146:6643–9. https://doi.org/10.1039/d1an01402a.
Article CAS PubMed Google Scholar
Chaleckis R, Meister I, Zhang P, Wheelock CE. Challenges, progress and promises of metabolite annotation for LC-MS-based metabolomics. Curr Opin Biotechnol. 2019;55:44–50. https://doi.org/10.1016/j.copbio.2018.07.010.
Article CAS PubMed Google Scholar
Li Z, Mao Z, Chen Z. In-situ growth of a metal organic framework composed of zinc(II), adeninate and biphenyldicarboxylate as a stationary phase for open-tubular capillary electrochromatography. Microchim Acta. 2019;186:53. https://doi.org/10.1007/s00604-018-3115-9.
Li Z, Mao Z, Zhou W, Chen Z. Incorporation of homochiral metal-organic cage into ionic liquid based monolithic column for capillary electrochromatography. Anal Chim Acta. 2020;1094:160–7. https://doi.org/10.1016/j.aca.2019.10.002.
Article CAS PubMed Google Scholar
Li Z, Mao Z, Zhou W, Chen Z. Gamma-cyclodextrin metal-organic framework supported by polydopamine as stationary phases for electrochromatographic enantioseparation. Talanta. 2020;218: 121160. https://doi.org/10.1016/j.talanta.2020.121160.
Article CAS PubMed Google Scholar
Zhou W, Sun W, Liu Y, Mao Z, Chen Z. Ionic liquid-copolymerized monolith based porous layer open tubular column for CEC-MS analysis. Talanta. 2020;209: 120556. https://doi.org/10.1016/j.talanta.2019.120556.
Article CAS PubMed Google Scholar
Li Z, Hu C, Liu Y, Li Q, Fu Y, Chen Z. Facile preparation of ethanediamine-beta-cyclodextrin modified capillary column for electrochromatographic enantioseparation of dansyl amino acids. J Chromatogr A. 2021;1643: 462082. https://doi.org/10.1016/j.chroma.2021.462082.
Article CAS PubMed Google Scholar
Li Q, Li Z, Fu Y, Hu C, Chen Z. Synthesis of crystalline covalent organic framework as stationary phase for capillary electrochromatography. J Chromatogr A. 2022;1673: 463070. https://doi.org/10.1016/j.chroma.2022.463070.
Article CAS PubMed Google Scholar
Sun W, Liu Y, Zhou W, Li Z, Chen Z. In-situ growth of a spherical vinyl-functionalized covalent organic framework as stationary phase for capillary electrochromatography-mass spectrometry analysis. Talanta. 2021;230: 122330. https://doi.org/10.1016/j.talanta.2021.122330.
Article CAS PubMed Google Scholar
Li Z, Liao Z, Hu J, Chen Z. In situ growth of imine-based covalent organic framework as stationary phase for high-efficiency electrochromatographic separation. J Chromatogr A. 2023;1694: 463905. https://doi.org/10.1016/j.chroma.2023.463905.
Article CAS PubMed Google Scholar
Wang F, Zhang Y, Wang G, Qi S, Lv W, Liu J, Chen H, Chen X. Synthesis of a covalent organic framework with hydrazine linkages and its application in open-tubular capillary electrochromatography. J Chromatogr A. 2022;1661: 462681. https://doi.org/10.1016/j.chroma.2021.462681.
Article CAS PubMed Google Scholar
He N, Li Z, Hu C, Chen Z. In situ synthesis of a spherical covalent organic framework as a stationary phase for capillary electrochromatography. J Pharm Anal. 2022;12:610–6. https://doi.org/10.1016/j.jpha.2022.06.005.
Article PubMed PubMed Central Google Scholar
Ji B, Yi G, Zhang K, Zhang Y, Gui Y, Gao D, Zeng J, Wang L, Xia Z. Nanoscale hierarchically micro- and mesoporous metal-organic frameworks for high-resolution and high-efficiency capillary electrochromatographic separation. Anal Chem. 2020;92:15655–62. https://doi.org/10.1021/acs.analchem.0c04074.
Article CAS PubMed Google Scholar
Bao T, Tang P, Mao Z, Chen Z. An immobilized carboxyl containing metal-organic framework-5 stationary phase for open-tubular capillary electrochromatography. Talanta. 2016;154:360–6. https://doi.org/10.1016/j.talanta.2016.03.089.
Article CAS PubMed Google Scholar
Xu Y, Xu L, Qi S, Dong Y, Rahman ZU, Chen H, Chen X. In situ synthesis of MIL-100(Fe) in the capillary column for capillary electrochromatographic separation of small organic molecules. Anal Chem. 2013;85:11369–75. https://doi.org/10.1021/ac402254u.
Article CAS PubMed Google Scholar
Pan C, Lv W, Wang G, Niu X, Guo H, Chen X. Simultaneous separation of neutral and cationic analytes by one dimensional open tubular capillary electrochromatography using zeolitic imidazolate framework-8 as stationary phase. J Chromatogr A. 2017;1484:98–106. https://doi.org/10.1016/j.chroma.2017.01.017.
Article CAS PubMed Google Scholar
Pan C, Wang W, Zhang H, Xu L, Chen X. In situ synthesis of homochiral metal-organic framework in capillary column for capillary electrochromatography enantioseparation. J Chromatogr A. 2015;1388:207–16. https://doi.org/10.1016/j.chroma.2015.02.034.
Article CAS PubMed Google Scholar
Fu Y, Li Z, Hu C, Li Q, Chen Z. Synthesis of carbon dots-based covalent organic nanomaterial as stationary phase for open tubular capillary electrochromatography. J Chromatogr A. 2022;1678: 463343. https://doi.org/10.1016/j.chroma.2022.463343.
Article CAS PubMed Google Scholar
Zhang J, Zhu P, Xie S, Zi M, Yuan L. Homochiral porous organic cage used as stationary phase for open tubular capillary electrochromatography. Anal Chim Acta. 2018;999:169–75. https://doi.org/10.1016/j.aca.2017.11.021.
Article CAS PubMed Google Scholar
Li Z, Mao Z, Chen Z. Polydopamine-assisted immobilization of a zinc(II)-derived metal-organic cage as a stationary phase for open-tubular capillary electrochromatography. Microchim Acta. 2019;186:449. https://doi.org/10.1007/s00604-019-3576-5.
He L, Tian C, Zhang J, Xu W, Peng B, Xie S, Zi M, Yuan L. Chiral metal-organic cages used as stationary phase for enantioseparations in capillary electrochromatography. Electrophoresis. 2020;41:104–11. https://doi.org/10.1002/elps.201900294.
Article CAS PubMed Google Scholar
Jiang J, Su F, Trewin A, Wood CD, Campbell NL, Niu H, Dickinson C, Ganin AY, Rosseinsky MJ, Khimyak YZ, Cooper AI. Conjugated microporous poly(aryleneethynylene) networks. Angew Chem Int Ed. 2007;46:8574–8. https://doi.org/10.1002/anie.200701595.
Jiang J, Su F, Trewin A, Wood CD, Niu H, Jones JTA, Khimyak YZ, Cooper AI. Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks. J Am Chem Soc. 2008;130:7710–20. https://doi.org/10.1021/ja8010176.
Article CAS PubMed Google Scholar
Chun J, Kang S, Park N, Park EJ, Jin X, Kim K-D, Seo HO, Lee SM, Kim HJ, Kwon WH, Park Y-K, Kim JM, Kim YD, Son SU. Metal-organic framework@microporous organic network: hydrophobic adsorbents with a crystalline inner porosity. J Am Chem Soc. 2014;136:6786–9. https://doi.org/10.1021/ja500362w.
Article CAS PubMed Google Scholar
Hong S, Yoo J, Park N, Lee SM, Park JG, Park JH, Son SU. Hollow Co@C prepared from a Co-ZIF@microporous organic network: magnetic adsorbents for aromatic pollutants in water. Chem Commun. 2015;51:17724–7. https://doi.org/10.1039/c5cc06873h.
Du Z, Cui Y, Yang C. Fabrication of spherical silica amino-functionalized microporous organic network composites for high performance liquid chromatography. Talanta. 2021;221: 121570. https://doi.org/10.1016/j.talanta.2020.121570.
Comments (0)