Monomer-mediated growth of β-cyclodextrin-based microporous organic network as stationary phase for capillary electrochromatography

Hayes R, Ahmed A, Edge T, Zhang HF. Core-shell particles: preparation, fundamentals and applications in high performance liquid chromatography. J Chromatogr A. 2014;1357:36–52. https://doi.org/10.1016/j.chroma.2014.05.010.

Article  CAS  PubMed  Google Scholar 

Li Q, Li Z, Fu Y, Clarot I, Boudier A, Chen Z. Room-temperature growth of covalent organic frameworks as the stationary phase for open-tubular capillary electrochromatography. Analyst. 2021;146:6643–9. https://doi.org/10.1039/d1an01402a.

Article  CAS  PubMed  Google Scholar 

Chaleckis R, Meister I, Zhang P, Wheelock CE. Challenges, progress and promises of metabolite annotation for LC-MS-based metabolomics. Curr Opin Biotechnol. 2019;55:44–50. https://doi.org/10.1016/j.copbio.2018.07.010.

Article  CAS  PubMed  Google Scholar 

Li Z, Mao Z, Chen Z. In-situ growth of a metal organic framework composed of zinc(II), adeninate and biphenyldicarboxylate as a stationary phase for open-tubular capillary electrochromatography. Microchim Acta. 2019;186:53. https://doi.org/10.1007/s00604-018-3115-9.

Article  CAS  Google Scholar 

Li Z, Mao Z, Zhou W, Chen Z. Incorporation of homochiral metal-organic cage into ionic liquid based monolithic column for capillary electrochromatography. Anal Chim Acta. 2020;1094:160–7. https://doi.org/10.1016/j.aca.2019.10.002.

Article  CAS  PubMed  Google Scholar 

Li Z, Mao Z, Zhou W, Chen Z. Gamma-cyclodextrin metal-organic framework supported by polydopamine as stationary phases for electrochromatographic enantioseparation. Talanta. 2020;218: 121160. https://doi.org/10.1016/j.talanta.2020.121160.

Article  CAS  PubMed  Google Scholar 

Zhou W, Sun W, Liu Y, Mao Z, Chen Z. Ionic liquid-copolymerized monolith based porous layer open tubular column for CEC-MS analysis. Talanta. 2020;209: 120556. https://doi.org/10.1016/j.talanta.2019.120556.

Article  CAS  PubMed  Google Scholar 

Li Z, Hu C, Liu Y, Li Q, Fu Y, Chen Z. Facile preparation of ethanediamine-beta-cyclodextrin modified capillary column for electrochromatographic enantioseparation of dansyl amino acids. J Chromatogr A. 2021;1643: 462082. https://doi.org/10.1016/j.chroma.2021.462082.

Article  CAS  PubMed  Google Scholar 

Li Q, Li Z, Fu Y, Hu C, Chen Z. Synthesis of crystalline covalent organic framework as stationary phase for capillary electrochromatography. J Chromatogr A. 2022;1673: 463070. https://doi.org/10.1016/j.chroma.2022.463070.

Article  CAS  PubMed  Google Scholar 

Sun W, Liu Y, Zhou W, Li Z, Chen Z. In-situ growth of a spherical vinyl-functionalized covalent organic framework as stationary phase for capillary electrochromatography-mass spectrometry analysis. Talanta. 2021;230: 122330. https://doi.org/10.1016/j.talanta.2021.122330.

Article  CAS  PubMed  Google Scholar 

Li Z, Liao Z, Hu J, Chen Z. In situ growth of imine-based covalent organic framework as stationary phase for high-efficiency electrochromatographic separation. J Chromatogr A. 2023;1694: 463905. https://doi.org/10.1016/j.chroma.2023.463905.

Article  CAS  PubMed  Google Scholar 

Wang F, Zhang Y, Wang G, Qi S, Lv W, Liu J, Chen H, Chen X. Synthesis of a covalent organic framework with hydrazine linkages and its application in open-tubular capillary electrochromatography. J Chromatogr A. 2022;1661: 462681. https://doi.org/10.1016/j.chroma.2021.462681.

Article  CAS  PubMed  Google Scholar 

He N, Li Z, Hu C, Chen Z. In situ synthesis of a spherical covalent organic framework as a stationary phase for capillary electrochromatography. J Pharm Anal. 2022;12:610–6. https://doi.org/10.1016/j.jpha.2022.06.005.

Article  PubMed  PubMed Central  Google Scholar 

Ji B, Yi G, Zhang K, Zhang Y, Gui Y, Gao D, Zeng J, Wang L, Xia Z. Nanoscale hierarchically micro- and mesoporous metal-organic frameworks for high-resolution and high-efficiency capillary electrochromatographic separation. Anal Chem. 2020;92:15655–62. https://doi.org/10.1021/acs.analchem.0c04074.

Article  CAS  PubMed  Google Scholar 

Bao T, Tang P, Mao Z, Chen Z. An immobilized carboxyl containing metal-organic framework-5 stationary phase for open-tubular capillary electrochromatography. Talanta. 2016;154:360–6. https://doi.org/10.1016/j.talanta.2016.03.089.

Article  CAS  PubMed  Google Scholar 

Xu Y, Xu L, Qi S, Dong Y, Rahman ZU, Chen H, Chen X. In situ synthesis of MIL-100(Fe) in the capillary column for capillary electrochromatographic separation of small organic molecules. Anal Chem. 2013;85:11369–75. https://doi.org/10.1021/ac402254u.

Article  CAS  PubMed  Google Scholar 

Pan C, Lv W, Wang G, Niu X, Guo H, Chen X. Simultaneous separation of neutral and cationic analytes by one dimensional open tubular capillary electrochromatography using zeolitic imidazolate framework-8 as stationary phase. J Chromatogr A. 2017;1484:98–106. https://doi.org/10.1016/j.chroma.2017.01.017.

Article  CAS  PubMed  Google Scholar 

Pan C, Wang W, Zhang H, Xu L, Chen X. In situ synthesis of homochiral metal-organic framework in capillary column for capillary electrochromatography enantioseparation. J Chromatogr A. 2015;1388:207–16. https://doi.org/10.1016/j.chroma.2015.02.034.

Article  CAS  PubMed  Google Scholar 

Fu Y, Li Z, Hu C, Li Q, Chen Z. Synthesis of carbon dots-based covalent organic nanomaterial as stationary phase for open tubular capillary electrochromatography. J Chromatogr A. 2022;1678: 463343. https://doi.org/10.1016/j.chroma.2022.463343.

Article  CAS  PubMed  Google Scholar 

Zhang J, Zhu P, Xie S, Zi M, Yuan L. Homochiral porous organic cage used as stationary phase for open tubular capillary electrochromatography. Anal Chim Acta. 2018;999:169–75. https://doi.org/10.1016/j.aca.2017.11.021.

Article  CAS  PubMed  Google Scholar 

Li Z, Mao Z, Chen Z. Polydopamine-assisted immobilization of a zinc(II)-derived metal-organic cage as a stationary phase for open-tubular capillary electrochromatography. Microchim Acta. 2019;186:449. https://doi.org/10.1007/s00604-019-3576-5.

Article  CAS  Google Scholar 

He L, Tian C, Zhang J, Xu W, Peng B, Xie S, Zi M, Yuan L. Chiral metal-organic cages used as stationary phase for enantioseparations in capillary electrochromatography. Electrophoresis. 2020;41:104–11. https://doi.org/10.1002/elps.201900294.

Article  CAS  PubMed  Google Scholar 

Jiang J, Su F, Trewin A, Wood CD, Campbell NL, Niu H, Dickinson C, Ganin AY, Rosseinsky MJ, Khimyak YZ, Cooper AI. Conjugated microporous poly(aryleneethynylene) networks. Angew Chem Int Ed. 2007;46:8574–8. https://doi.org/10.1002/anie.200701595.

Article  Google Scholar 

Jiang J, Su F, Trewin A, Wood CD, Niu H, Jones JTA, Khimyak YZ, Cooper AI. Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks. J Am Chem Soc. 2008;130:7710–20. https://doi.org/10.1021/ja8010176.

Article  CAS  PubMed  Google Scholar 

Chun J, Kang S, Park N, Park EJ, Jin X, Kim K-D, Seo HO, Lee SM, Kim HJ, Kwon WH, Park Y-K, Kim JM, Kim YD, Son SU. Metal-organic framework@microporous organic network: hydrophobic adsorbents with a crystalline inner porosity. J Am Chem Soc. 2014;136:6786–9. https://doi.org/10.1021/ja500362w.

Article  CAS  PubMed  Google Scholar 

Hong S, Yoo J, Park N, Lee SM, Park JG, Park JH, Son SU. Hollow Co@C prepared from a Co-ZIF@microporous organic network: magnetic adsorbents for aromatic pollutants in water. Chem Commun. 2015;51:17724–7. https://doi.org/10.1039/c5cc06873h.

Article  CAS  Google Scholar 

Du Z, Cui Y, Yang C. Fabrication of spherical silica amino-functionalized microporous organic network composites for high performance liquid chromatography. Talanta. 2021;221: 121570. https://doi.org/10.1016/j.talanta.2020.121570.

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif