Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood. 2000;96:3343–56.
Article CAS PubMed Google Scholar
Ayatollahi H, Keramati MR, Shirdel A, Kooshyar MM, Raiszadeh M, Shakeri S, et al. BCR-ABL fusion genes and laboratory findings in patients with chronic myeloid leukemia in northeast Iran. Caspian J Intern Med. 2018;9:65–70. https://doi.org/10.22088/cjim.9.1.65.
Article PubMed PubMed Central Google Scholar
Karow A, Gohring G, Sembill S, Lutterloh F, Neuhaus F, Callies S, et al. The cytogenetic landscape of pediatric chronic myeloid leukemia diagnosed in chronic phase. Cancers (Basel). 2022;14. https://doi.org/10.3390/cancers14071712.
Rowley JD. Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243:290–3. https://doi.org/10.1038/243290a0.
Article CAS PubMed Google Scholar
Heim D, Ebnöther M, Favre G. Chronic myeloid leukemia - update 2020. Ther Umsch. 2019;76:503–9. https://doi.org/10.1024/0040-5930/a001124.
Quintas-Cardama A, Cortes J. Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood. 2009;113:1619–30. https://doi.org/10.1182/blood-2008-03-144790.
Article CAS PubMed PubMed Central Google Scholar
Melo JV. The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood. 1996;88:2375–84.
Article CAS PubMed Google Scholar
Vinhas R, Cordeiro M, Pedrosa P, Fernandes AR, Baptista PV. Current trends in molecular diagnostics of chronic myeloid leukemia. Leuk Lymphoma. 2017;58:1791–804. https://doi.org/10.1080/10428194.2016.1265116.
Article CAS PubMed Google Scholar
Jain P, Kantarjian H, Patel KP, Gonzalez GN, Luthra R, Kanagal Shamanna R, et al. Impact of BCR-ABL transcript type on outcome in patients with chronic-phase CML treated with tyrosine kinase inhibitors. Blood. 2016;127:1269–75. https://doi.org/10.1182/blood-2015-10-674242.
Article CAS PubMed PubMed Central Google Scholar
Baccarani M, Castagnetti F, Gugliotta G, Rosti G, Soverini S, Albeer A, et al. The proportion of different BCR-ABL1 transcript types in chronic myeloid leukemia. An international overview. Leukemia. 2019;33:1173–83. https://doi.org/10.1038/s41375-018-0341-4.
Article CAS PubMed Google Scholar
Yu S, Cui M, He X, Jing R, Wang H. A review of the challenge in measuring and standardizing BCR-ABL1. Clin Chem Lab Med. 2017;55:1465–73. https://doi.org/10.1515/cclm-2016-0927.
Article CAS PubMed Google Scholar
Zhen C, Wang YL. Molecular monitoring of chronic myeloid leukemia: international standardization of BCR-ABL1 quantitation. J Mol Diagn. 2013;15:556–64. https://doi.org/10.1016/j.jmoldx.2013.05.010.
Article CAS PubMed Google Scholar
ISO 17511:2003. In vitro diagnostic medical devices - Measurement of quantities in biological samples - Metrological traceability of values assigned to calibrators and control materials. Geneva, Switzerland: ISO; 2003.
Fu Y, Zhang R, Wu Q, Zhang J, Bao L, Li J. External quality assessment of p210 BCR-ABL1 transcript quantification by RT-qPCR: Findings and recommendations. Int J Lab Hematol. 2018;41:46–54. https://doi.org/10.1111/ijlh.12919.
Labourier E, Cross NCP, Radich J, Pane F, Pagnano KB, Müller MC, et al. Establishment and validation of analytical reference panels for the standardization of quantitative BCR-ABL1 measurements on the international scale. Clin Chem. 2013;59:938–48. https://doi.org/10.1373/clinchem.2012.196477.
Article CAS PubMed Google Scholar
White HE, Matejtschuk P, Rigsby P, Gabert J, Lin F, Lynn Wang Y, et al. Establishment of the first World Health Organization International Genetic Reference Panel for quantitation of BCR-ABL mRNA. Blood. 2010;116:e111–7. https://doi.org/10.1182/blood-2010-06-291641.
Article CAS PubMed Google Scholar
Zhang J-W, Fu Y, Wu Q-S, Bao L-H, Peng R-X, Zhang R, et al. Standardization of BCR-ABL1 quantification on the international scale in China using locally developed secondary reference panels. Exp Hematol. 2020;81:42-9.e3. https://doi.org/10.1016/j.exphem.2019.12.002.
Article CAS PubMed Google Scholar
Maier J, Lange T, Cross M, Wildenberger K, Niederwieser D, Franke GN. Optimized digital droplet PCR for BCR-ABL. J Mol Diagn. 2019;21:27–37. https://doi.org/10.1016/j.jmoldx.2018.08.012.
Article CAS PubMed Google Scholar
Niu C, Wang X, Gao Y, Qiao X, Xie J, Zhang Y, et al. Accurate quantification of SARS-CoV-2 RNA by isotope dilution mass spectrometry and providing a correction of reverse transcription efficiency in droplet digital PCR. Anal Bioanal Chem. 2022;414:6771–7. https://doi.org/10.1007/s00216-022-04238-6.
Article CAS PubMed PubMed Central Google Scholar
Burke DG, Griffiths K, Kassir Z, Emslie K. Accurate measurement of DNA methylation that is traceable to the international system of units. Anal Chem. 2009;81:7294–301. https://doi.org/10.1021/ac901116f.
Article CAS PubMed Google Scholar
Lowenthal MS, Quittman E, Phinney KW. Absolute quantification of RNA or DNA using acid hydrolysis and mass spectrometry. Anal Chem. 2019;91:14569–76. https://doi.org/10.1021/acs.analchem.9b03625.
Article CAS PubMed PubMed Central Google Scholar
Heiss M, Reichle VF, Kellner S. Observing the fate of tRNA and its modifications by nucleic acid isotope labeling mass spectrometry: NAIL-MS. RNA Biol. 2017;14:1260–8. https://doi.org/10.1080/15476286.2017.1325063.
Article PubMed PubMed Central Google Scholar
Sarin LP, Kienast SD, Leufken J, Ross RL, Dziergowska A, Debiec K, et al. Nano LC-MS using capillary columns enables accurate quantification of modified ribonucleosides at low femtomol levels. RNA. 2018;24:1403–17. https://doi.org/10.1261/rna.065482.117.
Article CAS PubMed PubMed Central Google Scholar
Dong L, Zang C, Wang J, Li L, Gao Y, Wu L, et al. Lambda genomic DNA quantification using ultrasonic treatment followed by liquid chromatography-isotope dilution mass spectrometry. Anal Bioanal Chem. 2012;402:2079–88. https://doi.org/10.1007/s00216-011-5644-5.
Article CAS PubMed Google Scholar
Niu C, Dong L, Gao Y, Zhang Y, Wang X, Wang J. Quantitative analysis of RNA by HPLC and evaluation of RT-dPCR for coronavirus RNA quantification. Talanta. 2021;228:122227. https://doi.org/10.1016/j.talanta.2021.122227.
Article CAS PubMed PubMed Central Google Scholar
CLSI. EP17-A Protocols for Determination of Limits of Detection and Limits of Quantitation; Approved Guideline, Clinical and Laboratory Standards Institute; 2004.
ISO 5725–1:1994, Accuracy (Trueness and Precision) of Measurement Methods and Results – Part 1: General Principles and Definitions, Geneva, Switzerland, ISO; 1994.
ISO 5725–2:1994, Accuracy (Trueness and Precision) of Measurement Methods and Results – Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method, Geneva, Switzerland, ISO; 1994.
Weaver S, Dube S, Mir A, Qin J, Sun G, Ramakrishnan R, et al. Taking qPCR to a higher level: Analysis of CNV reveals the power of high throughput qPCR to enhance quantitative resolution. Methods. 2010;50:271–6. https://doi.org/10.1016/j.ymeth.2010.01.003.
Article CAS PubMed Google Scholar
Burke D. Title of document. In: Quantitative sars cov 2 certified reference material, SARS-CoV-2 Standard NMIA NA050 to NA055. Report ID: 210329, https://www.industry.gov.au/sites/default/files/2020-12/sars-cov-2_c_of_a_b200921_feb_2021.pdf. Accessed 29 Mar 2021.
ISO 17034. General requirements for the competence of reference material producers, Geneva, Switzerland: ISO; 2016.
ISO GUIDE 35:2017. Reference materials — Guidance for characterization and assessment of homogeneity and stability. Switzerland: ISO; 2017.
Van Dongen JJ, Macintyre EA, Gabert JA, Delabesse E, Rossi V, Saglio G, et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia. 1999;13:1901–28. https://doi.org/10.1038/sj.leu.2401592.
Comments (0)