Lu, L. L., Suscovich, T. J., Fortune, S. M. & Alter, G. Beyond binding: antibody effector functions in infectious diseases. Nat. Rev. Immunol. 18, 46–61 (2017).
Article PubMed PubMed Central Google Scholar
Halstead, S. B., Nimmannitya, S. & Cohen, S. N. Observations related to pathogenesis of dengue hemorrhagic fever. IV. Relation of disease severity to antibody response and virus recovered. Yale J. Biol. Med. 42, 311–328 (1970).
CAS PubMed PubMed Central Google Scholar
Sobotka, H. & Friedlander, M. The precipitin reaction of antipneumococcus sera. J. Exp. Med. 47, 57–92 (1928).
Article CAS PubMed PubMed Central Google Scholar
Felton, L. D. The units of protective antibody in anti-pneumococcus serum and antibody solution. J. Infect. Dis. 43, 531–542 (1928).
Waisbren, B. A. & Brown, I. A factor in the serum of patients with persisting infection that inhibits the bactericidal activity of normal serum against the organism that is causing the infection. J. Immunol. 97, 431–437 (1966).
Article CAS PubMed Google Scholar
Plummer, F. A. et al. Antibody to Rmp (outer membrane protein 3) increases susceptibility to gonococcal infection. J. Clin. Investig. 91, 339–343 (1993). This work presents clinical evidence that a bacterial-specific antibody increases disease susceptibility.
Article CAS PubMed PubMed Central Google Scholar
Tijani, M. K., Lugaajju, A. & Persson, K. E. M. Naturally acquired antibodies against Plasmodium falciparum: friend or foe? Pathogens 10, 832 (2021).
Article CAS PubMed PubMed Central Google Scholar
Taborda, C. P., Rivera, J., Zaragoza, O. & Casadevall, A. More is not necessarily better: prozone-like effects in passive immunization with IgG. J. Immunol. 170, 3621–3630 (2003).
Article CAS PubMed Google Scholar
Henrique, I. D. E. M. et al. Therapeutic antibodies against Shiga toxins: trends and perspectives. Front. Cell. Infect. Microbiol. 12, 825856 (2022).
Article PubMed PubMed Central Google Scholar
Plotkin, S. A. Recent updates on correlates of vaccine-induced protection. Front. Immunol. 13, 1081107 (2023).
Article PubMed PubMed Central Google Scholar
Smani, Y., McConnell, M. J. & Pachón, J. Role of fibronectin in the adhesion of Acinetobacter baumannii to host cells. PLoS ONE 7, e33073 (2012).
Article CAS PubMed PubMed Central Google Scholar
Wang, T. T. & Ravetch, J. V. Functional diversification of IgGs through Fc glycosylation. J. Clin. Invest. 129, 3492–3498 (2019).
Article PubMed PubMed Central Google Scholar
Dunkelberger, J. R. & Song, W.-C. Complement and its role in innate and adaptive immune responses. Cell Res. 20, 34–50 (2010).
Article CAS PubMed Google Scholar
Lambris, J. D., Ricklin, D. & Geisbrecht, B. V. Complement evasion by human pathogens. Nat. Rev. Microbiol. 6, 132–142 (2008).
Article CAS PubMed PubMed Central Google Scholar
Bournazos, S., Gupta, A. & Ravetch, J. V. The role of IgG Fc receptors in antibody-dependent enhancement. Nat. Rev. Immunol. 20, 633–643 (2020).
Article CAS PubMed PubMed Central Google Scholar
Halstead, S. B. & Katzelnick, L. COVID 19 vaccines: should we fear ADE? J. Infect. Dis. 222, jiaa518 (2020).
Wilder-Smith, A., Ooi, E.-E., Horstick, O. & Wills, B. Dengue. Lancet 393, 350–363 (2019).
Katzelnick, L. C. et al. Antibody-dependent enhancement of severe dengue disease in humans. Science 358, 929–932 (2017).
Article CAS PubMed PubMed Central Google Scholar
Salje, H. et al. Reconstruction of antibody dynamics and infection histories to evaluate dengue risk. Nature 557, 719–723 (2018). Together with Katzelnick et al. (2017), this work presents clinical evidence for increased dengue disease severity at specific antibody titres in large clinical cohorts.
Article CAS PubMed PubMed Central Google Scholar
Kliks, S. C., Nisalak, A., Brandt, W. E., Wahl, L. & Burke, D. S. Antibody-dependent enhancement of Dengue virus growth in human monocytes as a risk factor for Dengue hemorrhagic fever. Am. J. Trop. Med. Hyg. 40, 444–451 (1989).
Article CAS PubMed Google Scholar
Waggoner, J. J. et al. Antibody-dependent enhancement of severe disease is mediated by serum viral load in pediatric Dengue virus infections. J. Infect. Dis. 221, 1846–1854 (2020).
Article CAS PubMed PubMed Central Google Scholar
Rodenhuis-Zybert, I. A. et al. Immature Dengue virus: a veiled pathogen? PLoS Pathog. 6, e1000718 (2010).
Article PubMed PubMed Central Google Scholar
Junjhon, J. et al. Influence of pr-M cleavage on the heterogeneity of extracellular dengue virus particles. J. Virol. 84, 8353–8358 (2010).
Article CAS PubMed PubMed Central Google Scholar
Screaton, G., Mongkolsapaya, J., Yacoub, S. & Roberts, C. New insights into the immunopathology and control of dengue virus infection. Nat. Rev. Immunol. 15, 745–759 (2015).
Article CAS PubMed Google Scholar
Callaway, J. B. et al. Source and purity of dengue-viral preparations impact requirement for enhancing antibody to induce elevated IL-1β secretion: a primary human monocyte model. PLoS ONE 10, 1–26 (2015).
Flipse, J. et al. Antibody-dependent enhancement of Dengue virus infection in primary human macrophages; balancing higher fusion against antiviral responses. Sci. Rep. 6, 29201 (2016).
Article CAS PubMed PubMed Central Google Scholar
Wang, T. T. et al. IgG antibodies to dengue enhanced for FcγRIIIA binding determine disease severity. Science 355, 395–398 (2017).
Article CAS PubMed PubMed Central Google Scholar
Bournazos, S. et al. Antibody fucosylation predicts disease severity in secondary dengue infection. Science 372, 1102–1105 (2021).
Article CAS PubMed PubMed Central Google Scholar
Yamin, R. et al. Human FcγRIIIa activation on splenic macrophages drives dengue pathogenesis in mice. Nat. Microbiol. 8, 1468–1479 (2023). This study demonstrates that the specific antibody concentration, glycosylation and increased dengue virus load increases disease in an in vivo model.
Article CAS PubMed PubMed Central Google Scholar
Tabata, H., Morita, H., Kaji, H., Tohyama, K. & Tohyama, Y. Syk facilitates phagosome–lysosome fusion by regulating actin-remodeling in complement-mediated phagocytosis. Sci. Rep. 10, 22086 (2020).
Comments (0)