Effects of Lithium Ion Irradiation on Yttria-Stabilized Zirconia Thin Films: Structural and Optical Investigations

N. Claussen, M. Ruhle, and A.H. Heuer, Science and Technology of Zirconia II (New York: American Ceramic Society Inc, 1983).

Google Scholar 

R. Stevens, Zirconia and Zirconia Ceramics, 2nd ed., (Twickenham: Magnesium Elektron, 1986).

Google Scholar 

K.E. Sickafus, H.J. Matzke, T.H. Hartmann, K. Yasuda, J.A. Valdez, P. Chodak III., M. Nastasi, and R.A. Verrall, Radiation damage effects in zirconia. J. Nucl. Mater. 274, 66 (1999).

Article  CAS  Google Scholar 

R.H. French, S.J. Glass, F.S. Ohuchi, Y.N. Xu, and W.Y. Ching, Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2. Phys. Rev. B 49, 5133 (1994).

Article  CAS  Google Scholar 

S. Nath, S. Bajaj, and B. Basu, Microwave-sintered MgO-doped zirconia with improved mechanical and tribological properties. Int. J. Appl. Ceram. Technol. 5, 49 (2008).

Article  CAS  Google Scholar 

N.S. Jacobson, Z. Liu, L. Kaufman, and F. Zhang, Thermodynamic modeling of the YO1.5–ZrO2 system. J. Am. Ceram. Soc. 87, 1559 (2004).

Article  CAS  Google Scholar 

L. Combemale, G. Caboche, D. Stuerga, and D. Chaumont, Microwave synthesis of yttria stabilized zirconia (YSZ). Mater. Res. Bull. 40, 529 (2005).

Article  CAS  Google Scholar 

C.W. Kuo, Y.H. Lee, I.M. Hung, M.C. Wang, S.B. Wen, K.Z. Fung, and C.J. Shih, Crystallization kinetics and growth mechanism of 8 mol.% yttria-stabilized zirconia (8YSZ) nano-powders prepared by a sol-gel process. J. Alloys Compd. 453, 470 (2008).

Article  CAS  Google Scholar 

J. Molina Reyes, H. Tiznado, G. Soto, M. Vargas-Bautista, D. Dominguez, E. Bracamontes, D. Sweeney, and J. Read, Physical and electrical characterization of yttrium-stabilized zirconia (YSZ) thin films deposited by sputtering and atomic-layer deposition. J. Mater. Sci. Mater. Electron. 29, 15349 (2018).

Article  CAS  Google Scholar 

J.C. Ray, R.K. Pati, and P. Pramanik, Chemical synthesis and structural characterization of nanocrystalline powders of pure zirconia and yttria stabilized zirconia (YSZ). J. Eur. Ceram. Soc. 20, 1289 (2000).

Article  CAS  Google Scholar 

S. Tailor, M. Singh, and A. Doub, Synthesis and characterization of yttria-stabilized zirconia (YSZ) nano-clusters for thermal barrier coatings (TBCs) applications. J. Clust. Sci. 27, 1097 (2016).

Article  CAS  Google Scholar 

L. Chen, Y. Chang, Q. Guo, J. Zhang, F. Wan, and Y. Long, Phase stability, grain growth and photoluminescence property of nanocrystalline yttria-stabilized zirconia film under 500 keV Xe6+ ion irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B 328, 84 (2014).

Article  CAS  Google Scholar 

S. Akasaka, Y. Amamoto, H. Yuji, and I. Kanno, Limiting current type yttria-stabilized zirconia thin-film oxygen sensor with spiral Ta2O5 gas diffusion layer. Sens. Actuat. B Chem. 327, 128932 (2021).

Article  CAS  Google Scholar 

M. Raza, D. Cornil, J. Cornil, S. Lucas, R. Snyders, and S. Konstantinidis, Oxygen vacancy stabilized zirconia (OVSZ); a joint experimental and theoretical study. Scripta Mater. 124, 26 (2016).

Article  CAS  Google Scholar 

Y.H. Lee, C.W. Kuo, I.M. Hung, K.Z. Fung, and M.C. Wang, The thermal behavior of 8 mol.% yttria-stabilized zirconia nanocrystallites prepared by a sol-gel process. J. Non-Cryst. Solids 351, 3709 (2005).

Article  CAS  Google Scholar 

A.M. Adamska, R. Springell, A.D. Warren, L. Picco, O. Payton, and T.B. Scott, Growth and characterization of uranium-zirconium alloy thin films for nuclear industry applications. J. Phys. D Appl. Phys. 47, 10 (2014).

Article  Google Scholar 

S. de Souza, S.J. Visco, and L.C. De Jonghe, Thin-film solid oxide fuel cell with high performance at low-temperature. Solid State Ion. 98, 57 (1997).

Article  Google Scholar 

R. Frison, S. Heiroth, J.L.M. Rupp, K. Conder, E.J. Barthazy, E. Müller, M. Horisberger, M. Döbeli, and L.J. Gauckler, Crystallization of 8 mol.% yttria-stabilized zirconia thin-films deposited by RF-sputtering. Solid State Ion. 232, 29 (2013).

Article  CAS  Google Scholar 

Y.W. Lee, C.Y. Joung, S.H. Kim, and S.C. Lee, Inert matrix fuel—a new challenge for material technology in the nuclear fuel cycle. Met. Mater. Int. 7, 159 (2001).

Article  CAS  Google Scholar 

G. Ackland, Controlling radiation damage. Science 327, 1587 (2010).

Article  CAS  PubMed  Google Scholar 

I.J. Beyerlein, A. Caro, M.J. Demkowicz, N.A. Mara, A. Misra, and B.P. Uberuaga, Radiation damage tolerant nanomaterials. Mater. Today 16, 443 (2013).

Article  CAS  Google Scholar 

J. Adam and B. Cox, The irradiation-induced phase transformation in zirconia solid solutions. J. Nucl. Energy Part A React Sci. 11, 31 (1959).

Article  CAS  Google Scholar 

M. Nastasi and J.W. Mayer, Ion Implantation and Synthesis of Materials (Berlin: Springer, 2006).

Book  Google Scholar 

S.J. Zinkle and V.A. Skuratov, Track formation and dislocation loop interaction in spinel irradiated with swift heavy ions. Nucl. Instrum. Methods Phys. Res. Sect. B 141, 737 (1998).

Article  CAS  Google Scholar 

N. Itoh, D.M. Duffy, S. Khakshouri, and A.M. Stoneham, Making tracks: electronic excitation roles in forming swift heavy ion tracks. J. Phys. Condens. Matter 21, 474205 (2009).

Article  CAS  PubMed  Google Scholar 

J.-M. Costantini, C. Trautmann, L. Thomé, J. Jagielski, and F. Beuneu, Swift heavy ion-induced swelling and damage in yttria-stabilized zirconia. J. Appl. Phys. 101, 073501 (2007).

Article  Google Scholar 

R. Parveen, P. Kalita, R. Shukla, V. Grover, R. Pandey, G. Sattonnay, and D.K. Avasthi, Investigation of radiation tolerance of yttria stabilized zirconia in the ballistic collision regime: effect of grain size and environmental temperature. Nucl. Instrum. Methods Phys. Res. Sect. B 551, 165344 (2024).

Article  CAS  Google Scholar 

S. Dey, J.W. Drazin, Y. Wang, J.A. Valdez, T.G. Holesinger, B.P. Uberuaga, and R.H.R. Castro, Radiation tolerance of nanocrystalline ceramics: insights from yttria stabilized zirconia. Sci. Rep. 5, 7746 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

P. Kalita, S. Ghosh, G. Sattonnay, U.B. Singh, I. Monnet, and D.K. Avasthi, Radiation response of nano-crystalline cubic zirconia: comparison between nuclear energy loss and electronic energy loss regimes. Nucl. Instrum. Methods Phys. Res. Sect. B 435, 19 (2018).

Article  CAS  Google Scholar 

R.C. Ramola, M. Rawat, K. Joshi, A. Das, S.K. Gautam, and F. Singh, Study of phase transformation induced by electronic excitation in pure and yttrium doped ZrO2 thin films. Mater. Res. Express 4, 096401 (2017).

Article  Google Scholar 

T. Hojo, J. Aihara, K. Hojou, S. Furuno, H. Yamamoto, N. Nitani, T. Yamashita, K. Minato, and T. Sakuma, Irradiation effects on yttria-stabilized zirconia irradiated with neon ions. J. Nucl. Mater. 319, 81 (2003).

Article  CAS  Google Scholar 

T. Hojo, H. Yamamoto, J. Aihara, S. Furuno, K. Sawa, T. Sakuma, and K. Hojou, Radiation effects on yttria-stabilized zirconia irradiated with He or Xe ions at high temperature. Nucl. Instrum. Methods Phys. Res. Sect. B 241, 536 (2005).

Article  CAS  Google Scholar 

N. Sasajima, T. Matsui, K. Hojou, S. Furuno, H. Otsu, K. Izui, and T. Muromura, Radiation damage in yttria-stabilized zirconia under Xe ion irradiation. Nucl. Inst. Methods Phys. Res. B 141, 487 (1998).

Article  CAS  Google Scholar 

X. Zhang, C. Sun, H. Ji, M. Yang, H. Zhang, W. Tian, Y. Wu, O.V. Tolochko, and Y. Wang, A review of CNTs and graphene reinforced YSZ nanocomposites: preparation, mechanical and anti-irradiation properties. J. Mater. Sci. Technol. 167, 27 (2023).

Article  CAS  Google Scholar 

J.-M. Costantini, O. Cavani, and B. Boizot, On-line optical absorption of electron-irradiated yttria-stabilized zirconia. J. Phys. Chem. Solids 169, 110853 (2022).

Article  CAS  Google Scholar 

X.-M. Bai, A.F. Voter, R.G. Hoagland, M. Nastasi, and B.P. Uberuaga, Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science 327, 1631 (2010).

Article  CAS  PubMed  Google Scholar 

K.E. Sickafus, L. Minervini, R.W. Grimes, J.A. Valdez, M. Ishimaru, F. Li, K.J. McClellan, and T. Yamashita, Radiation tolerance of complex oxides. Science 289, 748 (2000).

Article 

Comments (0)

No login
gif