2022 Disasters in numbers - World — reliefweb.int. 2023. https://reliefweb.int/report/world/2022-disasters-numbers. Accessed 17 Mar 2023.
Sendai Framework for Disaster Risk Reduction 2015-2030 — undrr.org. 2015. https://www.undrr.org/publication/sendai-framework-disaster-risk-reduction-2015-2030. Accessed 26 Aug 2023.
Cui F. Deployment and integration of smart sensors with IoT devices detecting fire disasters in huge forest environment. Comput Commun. 2020;150:818–27.
Hildmann H, Kovacs E. Using unmanned aerial vehicles (UAVs) as mobile sensing platforms (MSPS) for disaster response, civil security and public safety. Drones. 2019;3(3):59.
Machkour Z, Ortiz-Arroyo D, Durdevic P. Classical and deep learning based visual servoing systems: a survey on state of the art. J Intell Robot Syst. 2022;104(1):1–27.
Hai X, Qiu H, Wen C, Feng Q. A novel distributed situation awareness consensus approach for UAV swarm systems. IEEE Trans Intell Transp Syst. 2023;24(12):14706–17.
Xiong C, Li Q, Lu X. Automated regional seismic damage assessment of buildings using an unmanned aerial vehicle and a convolutional neural network. Autom Constr. 2020;109:102994.
Atif M, Ahmad R, Ahmad W, Zhao L, Rodrigues JJ. UAV-assisted wireless localization for search and rescue. IEEE Syst J. 2021;15(3):3261–72.
Cabreira TM, Brisolara LB, Ferreira PR Jr. Survey on coverage path planning with unmanned aerial vehicles. Drones. 2019;3(1):4.
Mozaffari M, Saad W, Bennis M, Nam Y-H, Debbah M. A tutorial on UAVs for wireless networks: applications, challenges, and open problems. IEEE Commun Surv Tutorials. 2019;21(3):2334–60.
Sanchez-Lopez JL, Fernández RAS, Bavle H, Sampedro C, Molina M, Pestana J, Campoy P. Aerostack: an architecture and open-source software framework for aerial robotics. In: 2016 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE; 2016. pp. 332–41.
Cherif N, Jaafar W, Yanikomeroglu H, Yongacoglu A. On the optimal 3D placement of a UAV base station for maximal coverage of UAV users. arXiv:2008.09262 [Preprint]. 2020. Available from: http://arxiv.org/abs/2008.09262.
Mardani A, Chiaberge M, Giaccone P. Communication-aware UAV path planning. IEEE. Access. 2019;7:52609–21.
Fotia L, Delicato F, Fortino G. Trust in edge-based internet of things architectures: state of the art and research challenges. ACM Comput Surv. 2023;55(9):1–34.
Yang Z, Xu W, Shikh-Bahaei M. Energy efficient UAV communication with energy harvesting. IEEE Trans Veh Technol. 2019;69(2):1913–27.
Zeng Y, Zhang R. Energy-efficient UAV communication with trajectory optimization. IEEE Trans Wireless Commun. 2017;16(6):3747–60.
Nguyen M-N, Nguyen LD, Duong TQ, Tuan HD. Real-time optimal resource allocation for embedded UAV communication systems. IEEE Wireless Commun Lett. 2018;8(1):225–8.
Tan X, Zuo Z, Su S, Guo X, Sun X, Jiang D. Performance analysis of routing protocols for UAV communication networks. IEEE Access. 2020;8:92212–24.
Ji B, Li Y, Zhou B, Li C, Song K, Wen H. Performance analysis of UAV relay assisted IoT communication network enhanced with energy harvesting. IEEE Access. 2019;7:38738–47.
Ahmad A, Cheema AA, Finlay D. A survey of radio propagation channel modelling for low altitude flying base stations. Comput Netw. 2020;171:107122.
Coombes M, Chen W-H, Liu C. Boustrophedon coverage path planning for UAV aerial surveys in wind. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE; 2017. pp. 1563–71.
Li W, Wang L, Fei A. Minimizing packet expiration loss with path planning in UAV-assisted data sensing. IEEE Wireless Commun Lett. 2019;8(6):1520–3. Publisher: IEEE.
Wang C, Wang J, Shen Y, Zhang X. Autonomous navigation of UAVs in large-scale complex environments: a deep reinforcement learning approach. IEEE Trans Veh Technol. 2019;68(3):2124–36.
Xu T, Wang N, Lin H, Sun Z. UAV autonomous reconnaissance route planning based on deep reinforcement learning. In: 2019 IEEE International Conference on Unmanned Systems (ICUS). IEEE; 2019. pp. 761–6.
Wan K, Gao X, Hu Z, Zhang W. A RDA-based deep reinforcement learning approach for autonomous motion planning of UAV in dynamic unknown environments. JPhCS. 2020;1487(1): 012006.
Li B, Mu C, Wu B. A survey of vision based autonomous aerial refueling for unmanned aerial vehicles. In: 2012 Third International Conference on Intelligent Control and Information Processing. IEEE; 2012. pp. 1–6.
Kong W, Zhou D, Zhang D, Zhang J. Vision-based autonomous landing system for unmanned aerial vehicle: a survey. In: 2014 International Conference on Multisensor Fusion and Information Integration for Intelligent Systems (MFI). IEEE; 2014. pp. 1–8.
Máthé K, Buşoniu L. Vision and control for UAVs: a survey of general methods and of inexpensive platforms for infrastructure inspection. Sensors. 2015;15(7):14887–916.
Ruiz-del-Solar J, Loncomilla P, Soto N. A survey on deep learning methods for robot vision. arXiv:1803.10862 [Preprint]. 2018. Available from http://arxiv.org/abs/1803.10862.
Jenssen R, Roverso D, et al. Automatic autonomous vision-based power line inspection: a review of current status and the potential role of deep learning. Int J Electr Power Energy Syst. 2018;99:107–20.
Fraga-Lamas P, Ramos L, Mondéjar-Guerra V, Fernández-Caramés TM. A review on IoT deep learning UAV systems for autonomous obstacle detection and collision avoidance. Remote Sens. 2019;11(18):2144.
Samaras S, Diamantidou E, Ataloglou D, Sakellariou N, Vafeiadis A, Magoulianitis V, Lalas A, Dimou A, Zarpalas D, Votis K, et al. Deep learning on multi sensor data for counter UAV applications-a systematic review. Sensors. 2019;19(22):4837.
Mittal P, Singh R, Sharma A. Deep learning-based object detection in low-altitude UAV datasets: a survey. Image Vis Comput. 2020;104:104046.
Azimi M, Eslamlou AD, Pekcan G. Data-driven structural health monitoring and damage detection through deep learning: state-of-the-art review. Sensors. 2020;20(10):2778.
Chandra AL, Desai SV, Guo W, Balasubramanian VN. Computer vision with deep learning for plant phenotyping in agriculture: a survey. arXiv:2006.11391 [Preprint]. 2020. Available from: http://arxiv.org/abs/2006.11391.
Wu X, Li W, Hong D, Tao R, Du Q. Deep learning for UAV-based object detection and tracking: a survey. arXiv:2110.12638 [Preprint]. 2021. Available from: http://arxiv.org/abs/2110.12638.
Diez Y, Kentsch S, Fukuda M, Caceres MLL, Moritake K, Cabezas M. Deep learning in forestry using UAV-acquired RGB data: a practical review. Remote Sens. 2021;13(14):2837.
Srivastava S, Narayan S, Mittal S. A survey of deep learning techniques for vehicle detection from UAV images. J Syst Archit. 2021;117:102152.
Osco LP, Junior JM, Ramos APM, Jorge LADC, Fatholahi SN, Silva JDA, Matsubara ET, Pistori H, Gonçalves WN, Li J. A review on deep learning in UAV remote sensing. arXiv:2101.10861 [Preprint]. 2021. Available from: http://arxiv.org/abs/2101.10861.
Bouguettaya A, Zarzour H, Kechida A, Taberkit AM. Recent advances on UAV and deep learning for early crop diseases identification: a short review. In: 2021 International Conference on Information Technology (ICIT). IEEE; 2021. pp. 334–9.
Bouguettaya A, Zarzour H, Kechida A, Taberkit AM. Vehicle detection from UAV imagery with deep learning: a review. IEEE Trans Neural Netw Learn Syst. 2021;33(11):6047–67.
Wu J, Jin Z, Liu A, Yu L, Yang F. A survey of learning-based control of robotic visual servoing systems. J Frankl Inst. 2022;359(1):556–77.
Munawar HS, Hammad AW, Waller ST, Thaheem MJ, Shrestha A. An integrated approach for post-disaster flood management via the use of cutting-edge technologies and UAVs: a review. Sustainability. 2021;13(14):7925.
Bouguettaya A, Zarzour H, Taberkit AM, Kechida A. A review on early wildfire detection from unmanned aerial vehicles using deep learning-based computer vision algorithms. Signal Process. 2022;190:108309.
Adams SM, Friedland CJ. A survey of unmanned aerial vehicle (UAV) usage for imagery collection in disaster research and management. In: 9th International Workshop on Remote Sensing for Disaster Response, vol 8. 2011. pp. 1–8.
Li G, Zhou X, Yin J, Xiao Q. An UAV scheduling and planning method for post-disaster survey. Int Arch Photogramm Remote Sens Spat Inf Sci. 2014;40(2):169.
Yuan C, Zhang Y, Liu Z. A survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniques. Can J For Res. 2015;45(7):783–92.
Chan B, Guan H, Jo J, Blumenstein M. Towards UAV-based bridge inspection systems: a review and an application perspective. Struct Monit Maint. 2015;2(3):283–300.
Erdelj M, Natalizio E. UAV-assisted disaster management: applications and open issues. In: 2016 International Conference on Computing, Networking and Communications (ICNC). IEEE; 2016. pp. 1–5.
Gomez C, Purdie H. UAV-based photogrammetry and geocomputing for hazards and disaster risk monitoring-a review. Geoenvironmental Disasters. 2016;3(1):1–11.
Liu H, Wang X, Li L, Tu X, Wang Y, Liao X, Zhang L. Application of UAV aerial photogrammetry for rockfall disaster survey. J Eng Geol. 2017;25(Z1):82–7.
Hinterhofer T, Pfennigbauer M, Ullrich A, Rothbacher D, Schraml S, Hofstätter M. UAV-based lidar and gamma probe with real-time data processing and downlink for survey of nuclear disaster locations. In: Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIX, vol 10629. 2018. pp. 106290. International Society for Optics and Photonics.
Grogan S, Pellerin R, Gamache M. The use of unmanned aerial vehicles and drones in search and rescue operations–a survey. Proceedings of the PROLOG. 2018. pp. 1–13.
Yu M, Yang C, Li Y. Big data in natural disaster management: a review. Geosciences. 2018;8(5):165.
Recchiuto CT, Sgorbissa A. Post-disaster assessment with unmanned aerial vehicles: a survey on practical implementations and research approaches. J Field Rob. 2018;35(4):459–90.
Kim S, Kim T, Sim J. Applicability assessment of UAV mapping for disaster damage investigation in Korea. Int Arch Photogramm Remote Sens Spat Inf Sci. 2019. pp. 209–14.
Popescu D, Stoican F, Stamatescu G, Chenaru O, Ichim L. A survey of collaborative UAV-WSN systems for efficient monitoring. Sensors. 2019;19(21):4690.
Kerle N, Nex F, Gerke M, Duarte D, Vetrivel A. UAV-based structural damage mapping: a review. ISPRS Int J Geo Inf. 2020;9(1):14.
Nikhil N, Shreyas S, Vyshnavi G, Yadav S. Unmanned aerial vehicles (UAV) in disaster management applications. In: 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT). IEEE; 2020. pp. 140–8.
Akram T, Awais M, Naqvi R, Ahmed A, Naeem M. Multicriteria UAV base stations placement for disaster management. IEEE Syst J. 2020;14(3):3475–82.
Chamola V, Hassija V, Gupta S, Goyal A, Guizani M, Sikdar B. Disaster and pandemic management using machine learning: a survey. IEEE Internet Things J. 2020;8(21):16047–71.
Qadir Z, Ullah F, Munawar HS, Al-Turjman F. Addressing disasters in smart cities through UAVs path planning and 5G communications: a systematic review. Comput Commun. 2021;168:114–35.
Garnica-Peña RJ, Alcántara-Ayala I. The use of UAVs for landslide disaster risk research and disaster risk management: a literature review. J Mt Sci. 2021;18(2):482–98.
Furutani T, Minami M. Drones for disaster risk reduction and crisis response. In: Emerging Technologies for Disaster Resilience. Springer; 2021. pp. 51–62.
Khan A, Gupta S, Gupta SK. Cooperative control between multi-UAVs for maximum coverage in disaster management: review and proposed model. In: 2022 2nd International Conference on Computing and Information Technology (ICCIT). IEEE; 2022. pp. 271–7.
Munawar HS, Mojtahedi M, Hammad AW, Kouzani A, Mahmud MP. Disruptive technologies as a solution for disaster risk management: a review. Sci Total Environ. 2022;806:151351.
D’Aniello G, Gravina R, Gaeta M, Fortino G. Situation aware sensor-based wearable computing systems: a reference architecture-driven review. IEEE Sensors J. 2022;22(14):13853–63.
Yang J, You X, Wu G, Hassan MM, Almogren A, Guna J. Application of reinforcement learning in UAV cluster task scheduling. Futur Gener Comput Syst. 2019;95:140–8.
AlAli ZT, Alabady SA. A survey of disaster management and SAR operations using sensors and supporting techniques. Int J Disaster Risk Reduct. 2022;82:103295.
Haider SA, Zikria YB, Garg S, Ahmad S, Hassan MM, AlQahtani SA. Ai-based energy-efficient UAV-assisted IoT data collection with integrated trajectory and resource optimization. IEEE Wirel Commun. 2022;29(6):30–6.
Chhikara P, Tekchandani R, Kumar N, Guizani M, Hassan MM. Federated learning and autonomous UAVs for hazardous zone detection and AGI prediction in IoT environment. IEEE Internet Things J. 2021;8(20):15456–67.
Chien W-C, Hassan MM, Alsanad A, Fortino G. UAV-assisted joint wireless power transfer and data collection mechanism for sustainable precision agriculture in 5G. IEEE Micro. 2021;42(1):25–32.
Savaglio C, Fortino G. A simulation-driven methodology for IoT data mining based on edge computing. ACM Trans Internet Technol (TOIT). 2021;21(2):1–22.
Zhang H, Wang L, Tian T, Yin J. A review of unmanned aerial vehicle low-altitude remote sensing (UAV-LARS) use in agricultural monitoring in China. Remote Sens. 2021;13(6):1221.
Comments (0)