Rasmussen K, Belisario JM, Wark PA, Molina JA, Loong SL, Cotic Z, Papachristou N, Riboli–Sasco E, Car LT, Musulanov EM, et al. Offline elearning for undergraduates in health professions: a systematic review of the impact on knowledge, skills, attitudes and satisfaction. J Glob Health 2014:4(1).
Ramakrishnan N, Vijayaraghavan BKT, Venkataraman R. Breaking barriers to reach farther: A call for urgent action on tele-icu services. Indian Journal of Critical Care Medicine: Peer-reviewed, Official Publication of Indian Society of Critical Care Medicine. 2020;24(6):393.
Kumar Y, Koul A, Singla R, Ijaz MF. Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. J Ambient Intell Humaniz Comput. 2022; pp 1–28.
Semigran HL, Linder JA, Gidengil C, Mehrotra A. Evaluation of symptom checkers for self diagnosis and triage: audit study. BMJ. 2015:351.
Wei Z, Liu Q, Peng B, Tou H, Chen T, Huang X-J, Wong K-F, Dai X. Task-oriented dialogue system for automatic diagnosis. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). 2018; pp. 201–207.
Kao H-C, Tang K-F, Chang E. Context-aware symptom checking for disease diagnosis using hierarchical reinforcement learning. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2018;32.
Liao K, Liu Q, Wei Z, Peng B, Chen Q, Sun W, Huang X. Task-oriented dialogue system for automatic disease diagnosis via hierarchical reinforcement learning. 2020. arXiv preprint arXiv:2004.14254.
Millwood S. Developing a platform for learning from mistakes: changing the culture of patient safety amongst junior doctors. BMJ Open Quality. 2014;3(1):203658–2114.
Tang K-F, Kao H-C, Chou C-N, Chang EY. Inquire and diagnose: Neural symptom checking ensemble using deep reinforcement learning. In: NIPS Workshop on Deep Reinforcement Learning. 2016.
Peng Y-S, Tang K-F, Lin H-T, Chang E. Refuel: Exploring sparse features in deep reinforcement learning for fast disease diagnosis. Adv Neural Inf Process Syst. 2018;31:7322–31.
Lin S, Zhou P, Liang X, Tang J, Zhao R, Chen Z, Lin L. Graph-evolving meta-learning for low-resource medical dialogue generation. In: Proceedings of the 35th AAAI Conference on Artificial Intelligence. 2021; pp. 13362–13370. AAAI Press.
Naseem U, Khushi M, Dunn AG, Kim J. K-pathvqa: Knowledge-aware multimodal representation for pathology visual question answering. IEEE J Biomed Health Inform. 2023.
Lu H, Uddin S. A weighted patient network-based framework for predicting chronic diseases using graph neural networks. Sci Rep. 2021;11(1):1–12.
Dong W, Wozniak M, Wu J, Li W, Bai Z. De-noising aggregation of graph neural networks by using principal component analysis. IEEE Trans Industr Inform. 2022.
Dong W, Wu J, Zhang X, Bai Z, Wang P, Woźniak M. Improving performance and efficiency of graph neural networks by injective aggregation. Knowl-Based Syst. 2022;254: 109616.
Sun Z, Yin H, Chen H, Chen T, Cui L, Yang F. Disease prediction via graph neural networks. IEEE J Biomed Health Inform. 2020;25(3):818–26.
Bessadok A, Mahjoub MA, Rekik I. Graph neural networks in network neuroscience. IEEE Trans Pattern Anal Mach Intell. 2022;45(5):5833–48.
Mccombe N, Ding X, Prasad G, Gillespie P, Finn DP, Todd S, Mcclean PL, Wong-Lin K. Alzheimer’s disease assessments optimized for diagnostic accuracy and administration time. IEEE J Transl Eng Health Med. 2022;10:1–9.
Uddin S, Wang S, Lu H, Khan A, Hajati F, Khushi M. Comorbidity and multimorbidity prediction of major chronic diseases using machine learning and network analytics. Expert Syst Appl. 2022;205: 117761.
Caruccio L, Cirillo S, Polese G, Solimando G, Sundaramurthy S, Tortora G. Can chatgpt provide intelligent diagnoses? a comparative study between predictive models and chatgpt to define a new medical diagnostic bot. Expert Syst Appl. 2024;235: 121186.
Xu L, Zhou Q, Gong K, Liang X, Tang J, Lin L. End-to-end knowledge-routed relational dialogue system for automatic diagnosis. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2019;33:7346–7353.
Dietterich TG. Hierarchical reinforcement learning with the maxq value function decomposition. J Artif Intell Res. 2000;13:227–303.
Article MathSciNet Google Scholar
Chen W, Zhong C, Peng J, Wei Z. Dxformer: a decoupled automatic diagnostic system based on decoder-encoder transformer with dense symptom representations. Bioinformatics. 2023;39(1):744.
Levin E, Pieraccini R, Eckert W. Using markov decision process for learning dialogue strategies. In: Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181). 1998;1:201–204. IEEE.
Gu Y-K, Zhang J, Shen Y-J, Fan C-J. Fault tree analysis method based on probabilistic model checking and discrete time markov chain. J Ind Prod Eng. 2019;36(3):146–53.
Barto AG, Mahadevan S. Recent advances in hierarchical reinforcement learning. Discrete Event Dynamic Systems. 2003;13(1):41–77.
Budzianowski P, Ultes S, Su P-H, Mrkšić N, Wen T-H, Casanueva I, Barahona LMR, Gasic M. Sub-domain modelling for dialogue management with hierarchical reinforcement learning. In: Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue. 2017; pp. 86–92.
Peng B, Li X, Li L, Gao J, Celikyilmaz A, Lee S, Wong K-F. Composite task-completion dialogue policy learning via hierarchical deep reinforcement learning. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. 2017; pp. 2231–2240.
Liu J, Pan F, Luo L. Gochat: Goal-oriented chatbots with hierarchical reinforcement learning. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2020; pp. 1793–1796.
Chen Q, Zhuo Z, Wang W. Bert for joint intent classification and slot filling. 2019. arXiv preprint arXiv:1902.10909.
Tesauro G, et al. Temporal difference learning and td-gammon. Commun ACM. 1995;38(3):58–68.
Ramos J, et al. Using tf-idf to determine word relevance in document queries. In: Proceedings of the First Instructional Conference on Machine Learning. 2003;242:29–48. Citeseer.
Li X, Chen Y-N, Li L, Gao J, Celikyilmaz A. End-to-end task-completion neural dialogue systems. In: Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers). 2017; pp. 733–743.
Deemter KV, Theune M, Krahmer E. Real versus template-based natural language generation: A false opposition? Computational Linguistics. 2005;31(1):15–24.
Tomar M, Tiwari A, Saha S. Towards knowledge-infused automated disease diagnosis assistant. 2019. arXiv preprint http://arxiv.org/abs/2405.11181.
Yan G, Pei J, Ren P, Chen Z, Ren Z, Liang H. M\(\hat\) 2-meddialog: A dataset and benchmarks for multi-domain multi-service medical dialogues. 2021. arXiv preprint arXiv:2109.00430.
Zeng G, Yang W, Ju Z, Yang Y, Wang S, Zhang R, Zhou M, Zeng J, Dong X, Zhang R, et al. Meddialog: Large-scale medical dialogue dataset. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2020.
Franc V, Hlavác V. Multi-class support vector machine. In: Object Recognition Supported by User Interaction for Service Robots. 2002;2:236–239. IEEE.
Xia Y, Zhou J, Shi Z, Lu C, Huang H. Generative adversarial regularized mutual information policy gradient framework for automatic diagnosis. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2020;34:1062–1069.
Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller M. Playing atari with deep reinforcement learning. 2013. arXiv preprint arXiv:1312.5602.
Van Hasselt H, Guez A, Silver D. Deep reinforcement learning with double q-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2016;30.
Schaul T, Quan J, Antonoglou I, Silver D. Prioritized experience replay. In: ICLR (Poster). 2016.
Tiwari A, Raj R, Saha S, Bhattacharyya P, Tiwari S, Dhar M. Towards symptom assessment guided symptom investigation and disease diagnosis. IEEE Trans Artif Intell. 2023.
Welch BL. The generalization of ‘student’s’ problem when several different population varlances are involved. Biometrika. 1947;34(1–2):28–35.
Comments (0)