GGPPS Negatively Regulates the Formation of Neutrophil Extracellular Traps in Lipopolysaccharide-Induced Acute Lung Injury

Meyer, N.J., L. Gattinoni, and C.S. Calfee. 2021. Acute respiratory distress syndrome. Lancet 398: 622–637.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dorward, D.A., J.M. Felton, C.T. Robb, T. Craven, T. Kipari, T.S. Walsh, C. Haslett, K. Kefala, A.G. Rossi, and C.D. Lucas. 2017. The cyclin-dependent kinase inhibitor AT7519 accelerates neutrophil apoptosis in sepsis-related acute respiratory distress syndrome. Thorax 72: 1468–3296.

Article  Google Scholar 

Zemans, R.L., and M.A. Matthay. 2017. What drives neutrophils to the alveoli in ARDS? Thorax 72: 1–3.

Article  PubMed  Google Scholar 

Brinkmann, V., U. Reichard, C. Goosmann, B. Fauler, Y. Uhlemann, D.S. Weiss, Y. Weinrauch, and A. Zychlinsky. 2004. Neutrophil extracellular traps kill bacteria. Science 303: 1532–1535.

Article  CAS  PubMed  Google Scholar 

Jorch, S.K., and P. Kubes. 2017. An emerging role for neutrophil extracellular traps in noninfectious disease. Nature Medicine 23: 279–287.

Article  CAS  PubMed  Google Scholar 

Papayannopoulos, V. 2018. Neutrophil extracellular traps in immunity and disease. Nature Reviews Immunology 18: 134–147.

Article  CAS  PubMed  Google Scholar 

Liu, S., X. Su, P. Pan, L. Zhang, Y. Hu, H. Tan, D. Wu, B. Liu, H. Li, H. Li, Y. Li, M. Dai, Y. Li, C. Hu, and A. Tsung. 2016. Neutrophil extracellular traps are indirectly triggered by lipopolysaccharide and contribute to acute lung injury. Scientific Reports-Uk 6: 37252.

Article  CAS  Google Scholar 

Zhan, Y., Y. Ling, Q. Deng, Y. Qiu, J. Shen, H. Lai, Z. Chen, C. Huang, L. Liang, X. Li, J. Wu, W. Huang, and S. Wen. 2022. HMGB1-mediated neutrophil extracellular trap formation exacerbates intestinal ischemia/reperfusion-induced acute lung injury. The Journal of Immunology 208: 968–978.

Article  CAS  PubMed  Google Scholar 

Wang, X., W. Xu, P. Zhan, T. Xu, J. Jin, Y. Miu, Z. Zhou, Q. Zhu, B. Wan, G. Xi, L. Ye, Y. Liu, J. Gao, H. Li, T. Lv, and Y. Song. 2018. Overexpression of geranylgeranyl diphosphate synthase contributes to tumour metastasis and correlates with poor prognosis of lung adenocarcinoma. Journal of Cellular and Molecular Medicine 22: 1582–4934.

Google Scholar 

Chen, Z., N. Xu, D. Chong, S. Guan, C. Jiang, Z. Yang, and C. Li. 2018. Geranylgeranyl pyrophosphate synthase facilitates the organization of cardiomyocytes during mid-gestation through modulating protein geranylgeranylation in mouse heart. Cardiovascular Research 114: 1755–3245.

Article  Google Scholar 

Jia, W., Q.L. Tang, S. Jiang, S.Q. Sun, B. Xue, Y.D. Qiu, C. Li, and L. Mao. 2020. Conditional loss of geranylgeranyl diphosphate synthase alleviates acute obstructive cholestatic liver injury by regulating hepatic bile acid metabolism. The FEBS Journal 287: 1742–4658.

Article  Google Scholar 

Wan, B., W. Xu, M. Chen, S. Sun, J. Jin, Y. Lv, P. Zhan, S. Zhu, X. Wang, T. Lv, and Y. Song. 2020. Geranylgeranyl diphosphate synthase 1 knockout ameliorates ventilator-induced lung injury via regulation of TLR2/4-AP-1 signaling. Free Radical Biology & Medicine 147: 159–166.

Article  CAS  Google Scholar 

Jin, J., H. Qian, B. Wan, L. Zhou, C. Chen, Y. Lv, M. Chen, S. Zhu, L. Ye, X. Wang, W. Xu, T. Lv, and Y. Song. 2021. Geranylgeranyl diphosphate synthase deficiency hyperactivates macrophages and aggravates lipopolysaccharide-induced acute lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology 320: L1011–L1024.

Article  CAS  PubMed  Google Scholar 

Matute-Bello, G., G. Downey, B.B. Moore, S.D. Groshong, M.A. Matthay, A.S. Slutsky, W.M. Kuebler, Acute Lung Injury in Animals Study Group. 2011. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. American Journal of Respiratory Cell and Molecular Biology 44: 725–738.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Awasthi, D., S. Nagarkoti, A. Kumar, M. Dubey, A.K. Singh, P. Pathak, T. Chandra, M.K. Barthwal, and M. Dikshit. 2016. Oxidized LDL induced extracellular trap formation in human neutrophils via TLR-PKC-IRAK-MAPK and NADPH-oxidase activation. Free Radical Biology & Medicine 93: 190–203.

Article  CAS  Google Scholar 

Henneck, T., A. Mergani, S. Clever, A.E. Seidler, G. Brogden, S. Runft, W. Baumgärtner, K. Branitzki-Heinemann, and M. von Köckritz-Blickwede. 2022. Formation of neutrophil extracellular traps by reduction of cellular cholesterol is independent of oxygen and HIF-1α. International Journal of Molecular Sciences 23: 3195.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moorthy, A.N., P. Rai, H. Jiao, S. Wang, K.B. Tan, L. Qin, H. Watanabe, Y. Zhang, N. Teluguakula, and V.T.K. Chow. 2016. Capsules of virulent pneumococcal serotypes enhance formation of neutrophil extracellular traps during in vivo pathogenesis of pneumonia. Oncotarget 7: 19327–19340.

Article  PubMed  PubMed Central  Google Scholar 

NarayanaMoorthy, A., T. Narasaraju, P. Rai, R. Perumalsamy, K.B. Tan, S. Wang, B. Engelward, and V.T.K. Chow. 2013. In vivo and in vitro studies on the roles of neutrophil extracellular traps during secondary pneumococcal pneumonia after primary pulmonary influenza infection. Frontiers in Immunology 4: 56.

Google Scholar 

Han, B., J.J. Haitsma, Y. Zhang, X. Bai, M. Rubacha, S. Keshavjee, H. Zhang, and M. Liu. 2011. Long pentraxin PTX3 deficiency worsens LPS-induced acute lung injury. Intensive Care Medicine 37: 334–342.

Article  PubMed  Google Scholar 

Czaikoski, P.G., J.M.S.C. Mota, D.C. Nascimento, F. Sônego, F.V. e S. Castanheira, P.H. Melo, G.T. Scortegagna, R.L. Silva, R. Barroso-Sousa, F.O. Souto, A. Pazin-Filho, F. Figueiredo, J.C. Alves-Filho, and F.Q. Cunha. 2016. Neutrophil extracellular traps induce organ damage during experimental and clinical sepsis. PLoS One 11: e0148142.

Article  PubMed  PubMed Central  Google Scholar 

Meng, W., A. Paunel-Görgülü, S. Flohé, A. Hoffmann, I. Witte, C. MacKenzie, S.E. Baldus, J. Windolf, and T.T. Lögters. 2012. Depletion of neutrophil extracellular traps in vivo results in hypersusceptibility to polymicrobial sepsis in mice. Critical Care 16: R137.

Article  PubMed  PubMed Central  Google Scholar 

Liu, C., L. Xi, Y. Liu, J.C.W. Mak, S. Mao, Z. Wang, and Y. Zheng. 2023. An inhalable hybrid biomimetic nanoplatform for sequential drug release and remodeling lung immune homeostasis in acute lung injury treatment. ACS Nano 17: 11626–11644.

Article  CAS  PubMed  Google Scholar 

Tan, C., M. Aziz, and P. Wang. 2021. The vitals of NETs. Journal of Leukocyte Biology 110: 797–808.

Article  CAS  PubMed  Google Scholar 

Cui, Y., Y. Wang, G. Li, W. Ma, X. Zhou, J. Wang, and B. Liu. 2018. The Nox1/Nox4 inhibitor attenuates acute lung injury induced by ischemia-reperfusion in mice. PLoS ONE 13: e0209444.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kong, L., M. Andrassy, J.S. Chang, C. Huang, T. Asai, M.J. Szabolcs, S. Homma, R. Liu, Y.S. Zou, M. Leitges, S.D. Yan, R. Ramasamy, A.M. Schmidt, and S.-F. Yan. 2008. PKCbeta modulates ischemia-reperfusion injury in the heart. American Journal of Physiology. Heart and Circulatory Physiology 294: H1862-1870.

Article  CAS  PubMed  Google Scholar 

Segal, A.W. 2005. How neutrophils kill microbes. Annual Review of Immunology 23: 197–223.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Curnutte, J.T., R.W. Erickson, J. Ding, and J.A. Badwey. 1994. Reciprocal interactions between protein kinase C and components of the NADPH oxidase complex may regulate superoxide production by neutrophils stimulated with a phorbol ester. Journal of Biological Chemistry 269: 10813–10819.

Article  CAS  PubMed  Google Scholar 

Dekker, L.V., R.H. Palmer, and P.J. Parker. 1995. The protein kinase C and protein kinase C related gene families. Current Opinion in Structural Biology 5: 396–402.

Article  CAS  PubMed  Google Scholar 

Lim, M.B.H., J.W.P. Kuiper, A. Katchky, H. Goldberg, and M. Glogauer. 2011. Rac2 is required for the formation of neutrophil extracellular traps. Journal of Leukocyte Biology 90: 771–776.

Article  CAS  PubMed  Google Scholar 

Kawakami, T., J. He, H. Morita, K. Yokoyama, H. Kaji, C. Tanaka, S. Suemori, K. Tohyama, and Y. Tohyama. 2014. Rab27a is essential for the formation of neutrophil extracellular traps (NETs) in neutrophil-like differentiated HL60 cells. PLoS ONE 9: e84704.

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif