Versatile function of NF-ĸB in inflammation and cancer

Ghosh S, May MJ, Kopp EB. NF-κB and rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol. 1998;16(1):225–60.

Article  CAS  PubMed  Google Scholar 

Verma IM, Stevenson JK, Schwarz EM, Van Antwerp D, Miyamoto S. Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes Dev. 1995;9(22):2723–35.

Article  CAS  PubMed  Google Scholar 

Li Q, Verma IM. NF-κB regulation in the immune system. Nat Rev Immunol. 2002;2(10):725–34.

Article  CAS  PubMed  Google Scholar 

May MJ, Ghosh S. Rel/NF-κB and IκB proteins: an overview, seminars in cancer biology. Elsevier; 1997. pp. 63–73.

Silverman N, Maniatis T. NF-κB signaling pathways in mammalian and insect innate immunity. Genes Dev. 2001;15(18):2321–42.

Article  CAS  PubMed  Google Scholar 

Dechend R, Hirano F, Lehmann K, Heissmeyer V, Ansieau S, Wulczyn FG, Scheidereit C, Leutz A. The Bcl-3 oncoprotein acts as a bridging factor between NF-κB/Rel and nuclear co-regulators. Oncogene. 1999;18(22):3316–23.

Article  CAS  PubMed  Google Scholar 

Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Therapy. 2020;5(1):209.

Article  CAS  Google Scholar 

Sun SC. The non-canonical NF-κB pathway in immunity and inflammation, Nature reviews. Immunology. 2017;17(9):545–58. https://doi.org/10.1038/nri.2017.52.

Article  CAS  PubMed  Google Scholar 

Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol. 2009;27:693–733. https://doi.org/10.1146/annurev.immunol.021908.132641.

Article  CAS  PubMed  Google Scholar 

Sun SC, Ganchi PA, Ballard DW, Greene WC. NF-kappa B controls expression of inhibitor I kappa B alpha: evidence for an inducible autoregulatory pathway. Sci (New York N Y). 1993;259(5103):1912–5. https://doi.org/10.1126/science.8096091.

Article  CAS  Google Scholar 

Tam WF, Sen R. IkappaB family members function by different mechanisms. J Biol Chem. 2001;276(11):7701–4. https://doi.org/10.1074/jbc.C000916200.

Article  CAS  PubMed  Google Scholar 

Baldwin AS Jr. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol. 1996;14:649–83. https://doi.org/10.1146/annurev.immunol.14.1.649.

Article  CAS  PubMed  Google Scholar 

Sun SC, Ley SC. New insights into NF-kappaB regulation and function, Trends in immunology 29(10) (2008) 469 – 78. https://doi.org/10.1016/j.it.2008.07.003.

Hoffmann A, Natoli G, Ghosh G. Transcriptional regulation via the NF-kappaB signaling module. Oncogene. 2006;25(51):6706–16. https://doi.org/10.1038/sj.onc.1209933.

Article  CAS  PubMed  Google Scholar 

Whiteside ST, Epinat JC, Rice NR, Israël A. I kappa B Epsilon, a novel member of the I kappa B family, controls RelA and cRel NF-kappa B activity. EMBO J. 1997;16(6):1413–26. https://doi.org/10.1093/emboj/16.6.1413.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Häcker H, Karin M. Regulation and function of IKK and IKK-related kinases. Science’s STKE: Signal Transduct Knowl Environ. 2006;2006357:re13. https://doi.org/10.1126/stke.3572006re13.

Article  Google Scholar 

Israël A. The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb Perspect Biol. 2010;2(3):a000158. https://doi.org/10.1101/cshperspect.a000158.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruland J. Return to homeostasis: downregulation of NF-κB responses. Nat Immunol. 2011;12(8):709–14. https://doi.org/10.1038/ni.2055.

Article  CAS  PubMed  Google Scholar 

Rao P, Hayden MS, Long M, Scott ML, West AP, Zhang D, Oeckinghaus A, Lynch C, Hoffmann A, Baltimore D, Ghosh S. IkappaBbeta acts to inhibit and activate gene expression during the inflammatory response. Nature. 2010;466(7310):1115–9. https://doi.org/10.1038/nature09283.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghosh S, Hayden MS. New regulators of NF-kappaB in inflammation, Nature reviews. Immunology. 2008;8(11):837–48. https://doi.org/10.1038/nri2423.

Article  CAS  PubMed  Google Scholar 

Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell. 2008;132(3):344–62. https://doi.org/10.1016/j.cell.2008.01.020.

Article  CAS  PubMed  Google Scholar 

Wertz IE, Dixit VM. Signaling to NF-kappaB: regulation by ubiquitination. Cold Spring Harb Perspect Biol. 2010;2(3):a003350. https://doi.org/10.1101/cshperspect.a003350.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen LF, Greene WC. Shaping the nuclear action of NF-kappaB, Nature reviews. Mol cell Biology. 2004;5(5):392–401. https://doi.org/10.1038/nrm1368.

Article  CAS  Google Scholar 

Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol. 2010;11(5). https://doi.org/10.1038/ni.1863. 373 – 84.

Sun S-C. Non-canonical NF-κB signaling pathway. Cell Res. 2011;21(1):71–85.

Article  CAS  PubMed  Google Scholar 

Cildir G, Low KC, Tergaonkar V. Noncanonical NF-κB signaling in health and disease. Trends Mol Med. 2016;22(5):414–29.

Article  CAS  PubMed  Google Scholar 

Sun S-C. The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol. 2017;17(9):545–58.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kulms D, Schwarz T, NF-κB and, Cytokines V, Hormones A. Press2006, pp. 283–300. https://doi.org/10.1016/S0083-6729(06)74011-0.

Li F, Zhang J, Arfuso F, Chinnathambi A, Zayed ME, Alharbi SA, Kumar AP, Ahn KS, Sethi G. NF-κB in cancer therapy. Arch Toxicol. 2015;89(5):711–31. https://doi.org/10.1007/s00204-015-1470-4.

Article  CAS  PubMed  Google Scholar 

Lin A, Karin M. NF-κB in cancer: a marked target. Sem Cancer Biol. 2003;13(2):107–14. https://doi.org/10.1016/S1044-579X(02)00128-1.

Article  CAS  Google Scholar 

Dolcet X, Llobet D, Pallares J, Matias-Guiu X. NF-kB in development and progression of human cancer. Virchows Arch. 2005;446(5):475–82. https://doi.org/10.1007/s00428-005-1264-9.

Article  CAS  PubMed  Google Scholar 

Rahman I, Marwick J, Kirkham P. Redox modulation of chromatin remodeling: impact on histone acetylation and deacetylation, NF-kappaB and pro-inflammatory gene expression. Biochem Pharmacol. 2004;68(6):1255–67. https://doi.org/10.1016/j.bcp.2004.05.042.

Article  CAS  PubMed  Google Scholar 

Gao Y, Zhang Z, Du J, Yang X, Wang X, Wen K, Sun X. Xue-Jie-San restricts ferroptosis in Crohn’s disease via inhibiting FGL1/NF-κB/STAT3 positive feedback loop, Frontiers in pharmacology 14 (2023) 1148770. https://doi.org/10.3389/fphar.2023.1148770.

Fernandes Q, Inchakalody VP, Bedhiafi T, Mestiri S, Taib N, Uddin S, Merhi M, Dermime S. Chronic inflammation and cancer; the two sides of a coin. Life Sci. 2024;338:122390.

Comments (0)

No login
gif