The International Contrast Ultrasound Society (ICUS): https://icus-society.org/getting-started/finding-an-agent/ (Accessed 14 Feb, 2024)
Moriyasu F, Itoh K. Efficacy of perflubutane microbubble-enhanced ultrasound in the characterization and detection of focal liver lesions: phase 3 multicenter clinical trial. AJR. 2009;193:86–95.
Miyamoto Y, Ito T, Takada E, et al. Phase II Clinical Study of DD-723 (perflubutane): dose-response study in patients with breast tumors. J Med Ultrasonics. 2012;39:79–86.
Miyamoto Y, Ito T, Takada E, et al. Efficacy of Sonazoid (perflubutane) for contrast-enhanced ultrasound in the differentiation of focal breast lesions: phase 3 multicenter clinical trial. AJR. 2014;202:W400–7.
Ito T. Diagnostic criteria for contrast-enhanced ultrasound in the differentiation of focal breast lesions. Jpn J Med Ultrasonics. 2020;47:53–9.
Matsumura M, Sugihara H. Basic and clinical profile of perflubutane (Sonazoid powder for injection). Folia Pharmacol Jpn. 2007;130:413–20.
GE HealthCare: Interview form for Sonazoid. https://www.gehealthcare.co.jp/products/pharma/sonazoid (Accessed 14 Feb, 2024)
Sontum PC. Physicochemical characteristics of Sonazoid™, a new contrast agent for ultrasound imaging. Ultrasound Med Biol. 2008;34:824–33.
Sontum PC, et al. Acoustic properties of NC100100 and their relation with the microbubble size distribution. Invest Radiol. 1999;34:268–75.
Article CAS PubMed Google Scholar
Kono Y, Moriyasu F, Nada T, et al. Properties of ultrasound contrast agent (2)—study with harmonic imaging. Jpn J Med Ultrasonics. 1996;23:S270.
Keller SB, Sheeran PS, Averkiou MA. Cavitation therapy monitoring of commercial microbubbles with a clinical scanner. IEEE Trans Ultrason Ferroelectr Freq Control. 2021;68:1144–54.
Jang JY, Kim MY, Jeong SW, et al. Current consensus and guidelines of contrast enhanced ultrasound for the characterization of focal liver lesions. Clin Mol Hepatol. 2013;19:1–16.
Article PubMed PubMed Central Google Scholar
Saito S, Akashi N, Kushibiki J. Second-harmonic component of a nonlinearly distorted wave in a focused sound field. J Acoust Soc Am. 1987;82:621–8.
Saito S. Nonlinear acoustic field of focused ultrasound. J Med Ultrasonics. 2001;28:969–76.
Rudenko OV, Soluyan SI. Theoretical foundations of nonlinear acoustics. Translated by Beyer RT. New York: Consultant Bureau; 1977.
Kamakura T. Fundamentals of nonlinear acoustics. Aichi Shuppan, 1996; 61–125.
Hamilton MF, Blackstock DT. Nonlinear acoustics. New York: Academic Press; 1997.
Tjøtta JN, Tøtta S. Nonlinear equations of acoustics with application to parametric acoustic arrays. J Acoust Soc Am. 1981;69:1644–52.
Lucas BG, Muir TG. Field of a finit-amplitude forcusing source. J Acoust Soc Am. 1983;74:1522–8.
Schrope BA, Newhouse VL. Second-harmonic ultrasonic blood perfusion measurement. Ultrasound Med Biol. 1993;19:567–79.
Article CAS PubMed Google Scholar
Miyatake K, Uematsu M, Matsuda H, et al. Harmonic contrast echocardiography: a new method for detecting myocardial opacification after intravenous injection of contrast. J ACC. 1995;25:205A.
Moriyasu F, Ito Y, Nada T, et al. Gray-scale second-harmonic imaging of the liver with galactose-based microbubble. Radiology. 1995;197:230.
Averkiou MA, Bruce MF, Powers JE, et al. Imaging methods for ultrasound contrast agents. Ultrasound Med Biol. 2020;46:498–517.
Frinking P, Segers S, Luan Y, et al. Three decades of ultrasound contrast agents: a review of the past, present and future improvements. Ultrasound Med Biol. 2020;46:892–908.
Kono Y, Moriyasu F, Mine Y, et al. Gray-scale second-harmonic imaging of the liver with galactose-based microbubbles. Invest Radiol. 1997;32:120–5.
Article CAS PubMed Google Scholar
Burns PN, Powers JE, Simpson DH, et al. Harmonic power mode Doppler using microbubble contrast agents: An improved method for small vessel flow imaging. In: 1994 Proceedings of IEEE Ultrasonics Symposium. 1994. p. 1547–50.
Simpson DH, Burns PN. Pulse Inversion Doppler: A new method for detecting nonlinear echoes from microbubble contrast agents. In: 1997 IEEE ultrasonics symposium proceedings. An international symposium. 1997. p. 1597–600.
Hope Simpson D, Chin CT, Burns PN. Pulse inversion Doppler: a new method for detecting nonlinear echoes from microbubble contrast agents. IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46:372–82.
Sato T, Mine Y. Contrast echo imaging using non-linear signals from fundamental frequency band. Jpn J Med Ultrasonics. 2003;30:S167.
Sato T, Kawagishi T, Kamiyama N, et al. The property of non-linear signals at the fundamental frequency band using amplitude modulation. Jpn J Med Ultrasonics. 2004;31:S115.
Moriyasu F, Sato T, Kamiyama N, et al. Comparison between phase modulation and amplitude modulation methods in ultrasound contrast imaging of the liver with next generation contrast agents. Jpn J Med Ultrasonics. 2004;31:S245.
Brock-Fisher GA, Poland MD, Rafter PG. Means for increasing sensitivity in non-linear ultrasound imaging systems. 1996; US5577505A.
Mor-Avi V, Caiani EG, Collins KA, et al. Combined assessment of myocardial perfusion and regional left ventricular function by analysis of contrast-enhanced power modulation images. Circulation. 2001;104:352–7.
Article CAS PubMed Google Scholar
Lai TY, Averkiou MA. Linear signal cancellation of nonlinear pulsing schemes in a verasonics research scanner. IEEE Trans Ultrason Ferroelectr Freq Control. 2021;68:1721–8.
Article PubMed PubMed Central Google Scholar
Couture O, Fink M, Tanter M. Ultrasound contrast plane wave imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2012;59:2676–83.
Phillips PJ. Contrast pulse sequences (CPS): Imaging nonlinear microbubbles. Proc IEEE Int Ultrason Symp. 2001; 1739–45.
Phillips P, Gardner E. Contrast-agent detection and quantification. Eur Radiol. 2004;14:4–10.
Eckersley RJ, Chin CT, Burns PN. Optimising phase and amplitude modulation schemes for imaging microbubble contrast agents at low acoustic power. Ultrasound Med Biol. 2005;31:213–9.
Rayleigh L. On the pressure developed in a liquid during the collapse of a spherical cavity. Phil Mag. 1917;34:94–8.
Plesset MS. The dynamics of cavitation bubbles. Trans ASME J Appl Mech. 1949;16:277–82.
Lauterborn W. Numerical investigation of nonlinear oscillations of gas bubbles in liquids. J Acousr Soc Amer. 1976;59:283–93.
Glazman RE. Effects of adsorbed films on gas bubble radial oscillations. J Acoust Soc Amer. 1983;74:980–6.
Vorkurka K. Comparison of Rayleigh’s, Herring’s, and Gilmore’s models of gas bubbles. Acustica. 1986;59:214–9.
Leighton TG. The Acoustic Bubble. New York: Academic Press; 1994. p. 187–8 (P.100, 106).
Church CC. The effects of an elastic solid surface layer on the radial pulsations of gas bubbles. J Acoust Soc Amer. 1995;97:1510–21.
Hoff L, Sontum PC, Hoff B. Acoustic properties of shell- encapsulated, gas-filled ultrasound contrast agents. In: Proceeding of IEEE Ultrason Symp San Antonio TX. 1996; 2: 1441–4.
Frinking PJA, de Jong N. Acoustic modeling of shell- encapsulated gas bubbles. Ultrasound Med Biol. 1998;24:523–33.
Article CAS PubMed Google Scholar
Kubo H, Sato A, Ito S, et al. Nonlinear oscillation of an insonified microbubble with shell-coating. Jpn J Multiphase Flow. 2012;25:415–22.
The Japan Society of Mechanical Engineers. ed. Frontiers of micro-bubbles. Tokyo: Kyoritsu Publishing; 2006. p. 3–21.
Marmottant P, van der Meer S, Emmer M, et al. A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture. J Acoust Soc Amer. 2005;118:3499–505.
Morgan KE, Allen JS, Dayton PA, et al. Experimental and theoretical evaluation of microbubble behaviour: effect of transmitted phase and bubble size. IEEE Trans Ultrason Ferroelect Freq Contr. 2000;47:1494.
Comments (0)