Principle of contrast-enhanced ultrasonography

The International Contrast Ultrasound Society (ICUS): https://icus-society.org/getting-started/finding-an-agent/ (Accessed 14 Feb, 2024)

Moriyasu F, Itoh K. Efficacy of perflubutane microbubble-enhanced ultrasound in the characterization and detection of focal liver lesions: phase 3 multicenter clinical trial. AJR. 2009;193:86–95.

Article  PubMed  Google Scholar 

Miyamoto Y, Ito T, Takada E, et al. Phase II Clinical Study of DD-723 (perflubutane): dose-response study in patients with breast tumors. J Med Ultrasonics. 2012;39:79–86.

Article  Google Scholar 

Miyamoto Y, Ito T, Takada E, et al. Efficacy of Sonazoid (perflubutane) for contrast-enhanced ultrasound in the differentiation of focal breast lesions: phase 3 multicenter clinical trial. AJR. 2014;202:W400–7.

Article  PubMed  Google Scholar 

Ito T. Diagnostic criteria for contrast-enhanced ultrasound in the differentiation of focal breast lesions. Jpn J Med Ultrasonics. 2020;47:53–9.

Article  Google Scholar 

Matsumura M, Sugihara H. Basic and clinical profile of perflubutane (Sonazoid powder for injection). Folia Pharmacol Jpn. 2007;130:413–20.

Article  Google Scholar 

GE HealthCare: Interview form for Sonazoid. https://www.gehealthcare.co.jp/products/pharma/sonazoid (Accessed 14 Feb, 2024)

Sontum PC. Physicochemical characteristics of Sonazoid™, a new contrast agent for ultrasound imaging. Ultrasound Med Biol. 2008;34:824–33.

Article  PubMed  Google Scholar 

Sontum PC, et al. Acoustic properties of NC100100 and their relation with the microbubble size distribution. Invest Radiol. 1999;34:268–75.

Article  CAS  PubMed  Google Scholar 

Kono Y, Moriyasu F, Nada T, et al. Properties of ultrasound contrast agent (2)—study with harmonic imaging. Jpn J Med Ultrasonics. 1996;23:S270.

Google Scholar 

Keller SB, Sheeran PS, Averkiou MA. Cavitation therapy monitoring of commercial microbubbles with a clinical scanner. IEEE Trans Ultrason Ferroelectr Freq Control. 2021;68:1144–54.

Article  PubMed  Google Scholar 

Jang JY, Kim MY, Jeong SW, et al. Current consensus and guidelines of contrast enhanced ultrasound for the characterization of focal liver lesions. Clin Mol Hepatol. 2013;19:1–16.

Article  PubMed  PubMed Central  Google Scholar 

Saito S, Akashi N, Kushibiki J. Second-harmonic component of a nonlinearly distorted wave in a focused sound field. J Acoust Soc Am. 1987;82:621–8.

Article  Google Scholar 

Saito S. Nonlinear acoustic field of focused ultrasound. J Med Ultrasonics. 2001;28:969–76.

Google Scholar 

Rudenko OV, Soluyan SI. Theoretical foundations of nonlinear acoustics. Translated by Beyer RT. New York: Consultant Bureau; 1977.

Book  Google Scholar 

Kamakura T. Fundamentals of nonlinear acoustics. Aichi Shuppan, 1996; 61–125.

Hamilton MF, Blackstock DT. Nonlinear acoustics. New York: Academic Press; 1997.

Google Scholar 

Tjøtta JN, Tøtta S. Nonlinear equations of acoustics with application to parametric acoustic arrays. J Acoust Soc Am. 1981;69:1644–52.

Article  Google Scholar 

Lucas BG, Muir TG. Field of a finit-amplitude forcusing source. J Acoust Soc Am. 1983;74:1522–8.

Article  Google Scholar 

Schrope BA, Newhouse VL. Second-harmonic ultrasonic blood perfusion measurement. Ultrasound Med Biol. 1993;19:567–79.

Article  CAS  PubMed  Google Scholar 

Miyatake K, Uematsu M, Matsuda H, et al. Harmonic contrast echocardiography: a new method for detecting myocardial opacification after intravenous injection of contrast. J ACC. 1995;25:205A.

Google Scholar 

Moriyasu F, Ito Y, Nada T, et al. Gray-scale second-harmonic imaging of the liver with galactose-based microbubble. Radiology. 1995;197:230.

Google Scholar 

Averkiou MA, Bruce MF, Powers JE, et al. Imaging methods for ultrasound contrast agents. Ultrasound Med Biol. 2020;46:498–517.

Article  PubMed  Google Scholar 

Frinking P, Segers S, Luan Y, et al. Three decades of ultrasound contrast agents: a review of the past, present and future improvements. Ultrasound Med Biol. 2020;46:892–908.

Article  PubMed  Google Scholar 

Kono Y, Moriyasu F, Mine Y, et al. Gray-scale second-harmonic imaging of the liver with galactose-based microbubbles. Invest Radiol. 1997;32:120–5.

Article  CAS  PubMed  Google Scholar 

Burns PN, Powers JE, Simpson DH, et al. Harmonic power mode Doppler using microbubble contrast agents: An improved method for small vessel flow imaging. In: 1994 Proceedings of IEEE Ultrasonics Symposium. 1994. p. 1547–50.

Simpson DH, Burns PN. Pulse Inversion Doppler: A new method for detecting nonlinear echoes from microbubble contrast agents. In: 1997 IEEE ultrasonics symposium proceedings. An international symposium. 1997. p. 1597–600.

Hope Simpson D, Chin CT, Burns PN. Pulse inversion Doppler: a new method for detecting nonlinear echoes from microbubble contrast agents. IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46:372–82.

Article  Google Scholar 

Sato T, Mine Y. Contrast echo imaging using non-linear signals from fundamental frequency band. Jpn J Med Ultrasonics. 2003;30:S167.

Google Scholar 

Sato T, Kawagishi T, Kamiyama N, et al. The property of non-linear signals at the fundamental frequency band using amplitude modulation. Jpn J Med Ultrasonics. 2004;31:S115.

Google Scholar 

Moriyasu F, Sato T, Kamiyama N, et al. Comparison between phase modulation and amplitude modulation methods in ultrasound contrast imaging of the liver with next generation contrast agents. Jpn J Med Ultrasonics. 2004;31:S245.

Google Scholar 

Brock-Fisher GA, Poland MD, Rafter PG. Means for increasing sensitivity in non-linear ultrasound imaging systems. 1996; US5577505A.

Mor-Avi V, Caiani EG, Collins KA, et al. Combined assessment of myocardial perfusion and regional left ventricular function by analysis of contrast-enhanced power modulation images. Circulation. 2001;104:352–7.

Article  CAS  PubMed  Google Scholar 

Lai TY, Averkiou MA. Linear signal cancellation of nonlinear pulsing schemes in a verasonics research scanner. IEEE Trans Ultrason Ferroelectr Freq Control. 2021;68:1721–8.

Article  PubMed  PubMed Central  Google Scholar 

Couture O, Fink M, Tanter M. Ultrasound contrast plane wave imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2012;59:2676–83.

Article  PubMed  Google Scholar 

Phillips PJ. Contrast pulse sequences (CPS): Imaging nonlinear microbubbles. Proc IEEE Int Ultrason Symp. 2001; 1739–45.

Phillips P, Gardner E. Contrast-agent detection and quantification. Eur Radiol. 2004;14:4–10.

Article  Google Scholar 

Eckersley RJ, Chin CT, Burns PN. Optimising phase and amplitude modulation schemes for imaging microbubble contrast agents at low acoustic power. Ultrasound Med Biol. 2005;31:213–9.

Article  PubMed  Google Scholar 

Rayleigh L. On the pressure developed in a liquid during the collapse of a spherical cavity. Phil Mag. 1917;34:94–8.

Article  Google Scholar 

Plesset MS. The dynamics of cavitation bubbles. Trans ASME J Appl Mech. 1949;16:277–82.

Article  Google Scholar 

Lauterborn W. Numerical investigation of nonlinear oscillations of gas bubbles in liquids. J Acousr Soc Amer. 1976;59:283–93.

Article  Google Scholar 

Glazman RE. Effects of adsorbed films on gas bubble radial oscillations. J Acoust Soc Amer. 1983;74:980–6.

Article  CAS  Google Scholar 

Vorkurka K. Comparison of Rayleigh’s, Herring’s, and Gilmore’s models of gas bubbles. Acustica. 1986;59:214–9.

Google Scholar 

Leighton TG. The Acoustic Bubble. New York: Academic Press; 1994. p. 187–8 (P.100, 106).

Google Scholar 

Church CC. The effects of an elastic solid surface layer on the radial pulsations of gas bubbles. J Acoust Soc Amer. 1995;97:1510–21.

Article  Google Scholar 

Hoff L, Sontum PC, Hoff B. Acoustic properties of shell- encapsulated, gas-filled ultrasound contrast agents. In: Proceeding of IEEE Ultrason Symp San Antonio TX. 1996; 2: 1441–4.

Frinking PJA, de Jong N. Acoustic modeling of shell- encapsulated gas bubbles. Ultrasound Med Biol. 1998;24:523–33.

Article  CAS  PubMed  Google Scholar 

Kubo H, Sato A, Ito S, et al. Nonlinear oscillation of an insonified microbubble with shell-coating. Jpn J Multiphase Flow. 2012;25:415–22.

Article  Google Scholar 

The Japan Society of Mechanical Engineers. ed. Frontiers of micro-bubbles. Tokyo: Kyoritsu Publishing; 2006. p. 3–21.

Google Scholar 

Marmottant P, van der Meer S, Emmer M, et al. A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture. J Acoust Soc Amer. 2005;118:3499–505.

Article  CAS  Google Scholar 

Morgan KE, Allen JS, Dayton PA, et al. Experimental and theoretical evaluation of microbubble behaviour: effect of transmitted phase and bubble size. IEEE Trans Ultrason Ferroelect Freq Contr. 2000;47:1494.

Comments (0)

No login
gif