Rahm A-K, Lugenbiel P, Schweizer PA, Katus HA, Thomas D. Role of ion channels in heart failure and channelopathies. Biophys Rev. 2018;10:1097–106.
Article CAS PubMed PubMed Central Google Scholar
Behere SP, Weindling SN. Inherited arrhythmias: the cardiac channelopathies. Ann Pediatr Cardiol. 2015;8:210–20.
Article PubMed PubMed Central Google Scholar
Fernández-Falgueras A, Sarquella-Brugada G, Brugada J, Brugada R, Campuzano O. Cardiac channelopathies and sudden death: recent clinical and genetic advances. Biology [Internet]. 2017 Jan 29;6. Available from: https://doi.org/10.3390/biology6010007
Schwartz PJ, Stramba-Badiale M, Crotti L, Pedrazzini M, Besana A, Bosi G, et al. Prevalence of the congenital long-QT syndrome. Circulation. 2009;120:1761–7.
Article PubMed PubMed Central Google Scholar
Brugada J, Campuzano O, Arbelo E, Sarquella-Brugada G, Brugada R. Present status of Brugada syndrome: JACC state-of-the-art review. J Am Coll Cardiol. 2018;72:1046–59.
Funada A, Hayashi K, Ino H, Fujino N, Uchiyama K, Sakata K, et al. Assessment of QT intervals and prevalence of short QT syndrome in Japan. Clin Cardiol. 2008;31:270–4.
Article PubMed PubMed Central Google Scholar
Leenhardt A, Denjoy I, Guicheney P. Catecholaminergic polymorphic ventricular tachycardia. Circ Arrhythm Electrophysiol. 2012;5:1044–52.
Bajaj A, Senthivel V, Bhoyar R, Jain A, Imran M, Rophina M, et al. 1029 genomes of self-declared healthy individuals from India reveal prevalent and clinically relevant cardiac ion channelopathy variants. Hum Genom. 2022;16:30.
Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 1995;80:795–803.
Article CAS PubMed Google Scholar
Wang Q, Shen J, Splawski I, Atkinson D, Li Z, Robinson JL, et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 1995;80:805–11.
Article CAS PubMed Google Scholar
Campuzano O, Beltrán-Álvarez P, Iglesias A, Scornik F, Pérez G, Brugada R. Genetics and cardiac channelopathies. Genet Med. 2010;12:260–7.
Musunuru K, Hershberger RE, Day SM, Klinedinst NJ, Landstrom AP, Parikh VN, et al. Genetic testing for inherited cardiovascular diseases: a scientific statement from the American Heart Association. Circ Genom Precis Med. 2020;13:e000067.
Zeppenfeld K, Tfelt-Hansen J, de Riva M, Winkel BG, Behr ER, Blom NA, et al. 2022 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J 2022;43:3997–4126.
Wilde AAM, Semsarian C, Márquez MF, Sepehri Shamloo A, Ackerman MJ, Ashley EA, et al. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. Heart Rhythm. 2022;19:e1–60.
Adler A, Novelli V, Amin AS, Abiusi E, Care M, Nannenberg EA, et al. An international, multicentered, evidence-based reappraisal of genes reported to cause congenital long QT syndrome. Circulation 2020;141:418–28.
Article CAS PubMed PubMed Central Google Scholar
Hosseini SM, Kim R, Udupa S, Costain G, Jobling R, Liston E, et al. Reappraisal of reported genes for sudden arrhythmic death: evidence-based evaluation of gene validity for Brugada syndrome. Circulation 2018;138:1195–205.
Article PubMed PubMed Central Google Scholar
Walsh R, Adler A, Amin AS, Abiusi E, Care M, Bikker H, et al. Evaluation of gene validity for CPVT and short QT syndrome in sudden arrhythmic death. Eur Heart J 2022;43:1500–10.
Article CAS PubMed Google Scholar
Schwartz PJ, Ackerman MJ, George AL Jr, Wilde AAM. Impact of genetics on the clinical management of channelopathies. J Am Coll Cardiol. 2013;62:169–80.
Article CAS PubMed PubMed Central Google Scholar
Kapplinger JD, Tester DJ, Alders M, Benito B, Berthet M, Brugada J, et al. An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm. 2010;7:33–46.
Tester DJ, Kopplin LJ, Will ML, Ackerman MJ. Spectrum and prevalence of cardiac ryanodine receptor (RyR2) mutations in a cohort of unrelated patients referred explicitly for long QT syndrome genetic testing. Heart Rhythm. 2005;2:1099–105.
Leung KSK, Huang H, Chung CT, Radford D, Lakhani I, Li CKH, et al. Historical perspective and recent progress in cardiac ion channelopathies research and clinical practice in Hong Kong. J Inter Card Electrophysiol. 2023;24:1–10.
Ge HY, Li XM, Jiang H, Li MT, Zhang Y, Liu HJ. [Clinical characteristics and treatment of congenital long QT syndrome in 58 children]. Zhonghua Er Ke Za Zhi. 2019;57:272–6.
Jiang H, Li X-M, Ge H-Y, Zhang Y, Liu H-J, Li M-T. Investigation of catecholaminergic polymorphic ventricular tachycardia children in China: clinical characteristics, delay to diagnosis, and misdiagnosis. Chin Med J. 2018;131:2864–5.
PubMed PubMed Central Google Scholar
Vyas B, Puri RD, Namboodiri N, Saxena R, Nair M, Balakrishnan P, et al. Phenotype guided characterization and molecular analysis of Indian patients with long QT syndromes. Indian Pacing Electrophysiol J 2016;16:8–18.
Article PubMed PubMed Central Google Scholar
Dellefave-Castillo LM, Cirino AL, Callis TE, Esplin ED, Garcia J, Hatchell KE, et al. Assessment of the diagnostic yield of combined cardiomyopathy and arrhythmia genetic testing. JAMA Cardiol. 2022;7:966–74.
Article PubMed PubMed Central Google Scholar
Ewans LJ, Minoche AE, Schofield D, Shrestha R, Puttick C, Zhu Y, et al. Whole exome and genome sequencing in mendelian disorders: a diagnostic and health economic analysis. Eur J Hum Genet. 2022;30:1121–31.
Article CAS PubMed PubMed Central Google Scholar
Di Resta C, Berg J, Villatore A, Maia M, Pili G, Fioravanti F, et al. Concealed substrates in Brugada syndrome: isolated channelopathy or associated cardiomyopathy? Genes [Internet]. 2022 Sep 28;13. Available from: https://doi.org/10.3390/genes13101755.
Barc J, Tadros R, Glinge C, Chiang DY, Jouni M, Simonet F, et al. Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility. Nat Genet. 2022;54:232–9.
Article CAS PubMed PubMed Central Google Scholar
GUaRDIAN Consortium, Sivasubbu S, Scaria V. Genomics of rare genetic diseases-experiences from India. Hum Genom. 2019;14:52.
Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215.
Article CAS PubMed PubMed Central Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–20.
Article CAS PubMed PubMed Central Google Scholar
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997v2 [Preprint]. 2013 [cited 2013 May 26]: [3 p.]. Available from: http://arxiv.org/abs/1303.3997
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics 2009;25:2078–9.
Article PubMed PubMed Central Google Scholar
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.
Comments (0)