A novel intraoperative acetabular reaming center locating method in total hip arthroplasty for Crowe type IV developmental dysplasia of the hip: a retrospective cohort study

Jacobsen S, Sonne-Holm S, Soballe K, Gebuhr P, Lund B (2005) Hip dysplasia and osteoarthrosis: a survey of 4151 subjects from the Osteoarthrosis Substudy of the Copenhagen City Heart Study. Acta Orthop 76(2):149–158. https://doi.org/10.1080/00016470510030517

Article  PubMed  Google Scholar 

Pivec R, Johnson AJ, Mears SC, Mont MA (2012) Hip arthroplasty. Lancet 380(9855):1768–1777. https://doi.org/10.1016/s0140-6736(12)60607-2

Article  PubMed  Google Scholar 

Sakemi Y, Komiyama K, Yoshimoto K, Shiomoto K, Iwamoto M, Nakashima Y (2019) How does anteroposterior cup placement affect bone coverage and range of motion in primary total hip arthroplasty for hip dysplasia? J Orthop Sci 24(2):269–274. https://doi.org/10.1016/j.jos.2018.08.019

Article  PubMed  Google Scholar 

Karaismailoglu B, Erdogan F, Kaynak G (2019) High hip center reduces the dynamic hip range of motion and increases the hip load: a gait analysis study in hip arthroplasty patients with unilateral developmental dysplasia. J Arthroplasty 34(6):1267 72 e1. https://doi.org/10.1016/j.arth.2019.02.017

Article  Google Scholar 

Komiyama K, Nakashima Y, Hirata M, Hara D, Kohno Y, Iwamoto Y (2016) Does high hip center decrease range of motion in total hip arthroplasty? A computer simulation study J Arthroplasty 31(10):2342–2347. https://doi.org/10.1016/j.arth.2016.03.014

Article  PubMed  Google Scholar 

Xu J, Xu C, Mao Y, Zhang J, Li H, Zhu Z (2016) Posterosuperior placement of a standard-sized cup at the true acetabulum in acetabular reconstruction of developmental dysplasia of the hip with high dislocation. J Arthroplasty 31(6):1233–1239. https://doi.org/10.1016/j.arth.2015.12.019

Article  PubMed  Google Scholar 

Ding Z-c, Zeng W-n, Mou P, Liang Z-m, Wang D, Zhou Z-k (2020) Risk of dislocation after total hip arthroplasty in patients with Crowe type IV developmental dysplasia of the hip. Orthop Surg 12(2):589–600. https://doi.org/10.1111/os.12665

Article  PubMed  PubMed Central  Google Scholar 

Livermore J, Ilstrup D, Morrey B (1990) Effect of femoral head size on wear of the polyethylene acetabular component. J Bone Joint Surg Am 72(4):518–28

Article  CAS  PubMed  Google Scholar 

Lusty PJ, Tai CC, Sew-Hoy RP, Walter WL, Walter WK, Zicat BA (2007) Third-generation alumina-on-alumina ceramic bearings in cementless total hip arthroplasty. JBJS 89(12):2676–2683. https://doi.org/10.2106/jbjs.F.01466

Article  CAS  Google Scholar 

Petsatodis GE, Papadopoulos PP, Papavasiliou KA, Hatzokos IG, Agathangelidis FG, Christodoulou AG (2010) Primary cementless total hip arthroplasty with an alumina ceramic-on-ceramic bearing: results after a minimum of twenty years of follow-up. JBJS 92(3):639–644. https://doi.org/10.2106/jbjs.H.01829

Article  Google Scholar 

Meermans G, Van Doorn WJ, Koenraadt K, Kats J (2014) The use of the transverse acetabular ligament for determining the orientation of the components in total hip replacement. Bone Joint J 96-B(3):312–8. https://doi.org/10.1302/0301-620X.96B3.32989

Article  CAS  PubMed  Google Scholar 

Karachalios T, Hartofilakidis G (2010) Congenital hip disease in adults. J Bone Joint Surg British 92-B(7):914–21. https://doi.org/10.1302/0301-620X.92B7.24114

Article  Google Scholar 

Mathew G, Agha R, Albrecht J, Goel P, Mukherjee I, Pai P et al (2021) STROCSS 2021: Strengthening the reporting of cohort, cross-sectional and case-control studies in surgery. Int J Surg 96:106165. https://doi.org/10.1016/j.ijsu.2021.106165

Article  PubMed  Google Scholar 

Crowe JF, Mani VJ, Ranawat CS (1979) Total hip replacement in congenital dislocation and dysplasia of the hip. J Bone Joint Surg Am 61(1):15–23

Article  CAS  PubMed  Google Scholar 

Nie Y, Pei F, Shen B, Kang P, Li Z (2015) Implication of acetabular width on the anteroposterior pelvic radiograph of patients with developmental dysplasia of the hip. J Arthroplasty 30(3):489–494. https://doi.org/10.1016/j.arth.2014.09.024

Article  PubMed  Google Scholar 

Li H, Wang L, Dai K, Zhu Z (2013) Autogenous impaction grafting in total hip arthroplasty with developmental dysplasia of the hip. J Arthroplasty 28(4):637–643. https://doi.org/10.1016/j.arth.2012.07.007

Article  PubMed  Google Scholar 

Fukushi JI, Kawano I, Motomura G, Hamai S, Kawaguchi KI, Nakashima Y (2018) Does hip center location affect the recovery of abductor moment after total hip arthroplasty? Orthop Traumatol Surg Res 104(8):1149–1153. https://doi.org/10.1016/j.otsr.2018.06.022

Article  PubMed  Google Scholar 

Yang Y, Zuo J, Liu T, Xiao J, Liu S, Gao Z (2017) Morphological analysis of true acetabulum in hip dysplasia (Crowe classes I-IV) via 3-D implantation simulation. J Bone Joint Surg Am 99(17):e92. https://doi.org/10.2106/JBJS.16.00729

Article  PubMed  Google Scholar 

Shen J, Sun J, Ma H, Du Y, Li T, Zhou Y (2020) High hip center technique in total hip arthroplasty for Crowe type II-III developmental dysplasia: results of midterm follow-up. Orthop Surg 12(4):1245–1252. https://doi.org/10.1111/os.12756

Article  PubMed  PubMed Central  Google Scholar 

Liu B, Gao YH, Ding L, Li SQ, Liu JG, Qi X (2018) Computed tomographic evaluation of bone stock in patients with Crowe type III developmental dysplasia of the hip: implications for guiding acetabular component placement using the high hip center technique. J Arthroplasty 33(3):915–918. https://doi.org/10.1016/j.arth.2017.10.021

Article  PubMed  Google Scholar 

Jamari J, Anwar IB, Saputra E, van der Heide E (2017) Range of motion simulation of hip joint movement during salat activity. J Arthroplasty 32(9):2898–2904. https://doi.org/10.1016/j.arth.2017.03.056

Article  CAS  PubMed  Google Scholar 

Bunn A, Colwell CW Jr, D’Lima DD (2012) Bony impingement limits design-related increases in hip range of motion. Clin Orthop Relat Res 470(2):418–427. https://doi.org/10.1007/s11999-011-2096-3

Article  PubMed  Google Scholar 

Incavo SJ, Gold JE, Exaltacion JJ, Thompson MT, Noble PC (2011) Does acetabular retroversion affect range of motion after total hip arthroplasty? Clin Orthop Relat Res 469(1):218–224. https://doi.org/10.1007/s11999-010-1482-6

Article  PubMed  Google Scholar 

Renkawitz T, Weber M, Springorum HR, Sendtner E, Woerner M, Ulm K et al (2015) Impingement-free range of movement, acetabular component cover and early clinical results comparing “femur-first” navigation and “conventional” minimally invasive total hip arthroplasty: a randomised controlled trial. Bone Joint J 97-b(7):890–8. https://doi.org/10.1302/0301-620x.97b7.34729

Article  CAS  PubMed  Google Scholar 

Jóźwiak M, Rychlik M, Musielak B, Chen BP-J, Idzior M, Grzegorzewski A (2015) An accurate method of radiological assessment of acetabular volume and orientation in computed tomography spatial reconstruction. BMC Musculoskelet Disord 16(1):42. https://doi.org/10.1186/s12891-015-0503-8

Article  PubMed  PubMed Central  Google Scholar 

Huang Y-F, Gao Y-H, Li Y-R, Ding L, Liu J-G, Qi X (2020) Assessment of pelvic morphology using 3D imaging and analysis in unilateral Crowe-IV developmental dysplasia of the hip. Bone Joint J 102-B(10):1311–8. https://doi.org/10.1302/0301-620X.102B10.BJJ-2020-0317.R1

Article  PubMed  Google Scholar 

Hu Y, Zou D, Sun Q, Jiang M, Li H, Tsai T-Y, Zhang J (2022) Postoperative hip center position associated with the range of internal rotation and extension during gait in hip dysplasia patients after total hip arthroplasty. Front Bioeng Biotechnol 10:831647. https://doi.org/10.3389/fbioe.2022.831647

Zhang J, Wei J, Mao Y, Li H, Xie Y, Zhu Z (2015) Range of hip joint motion in developmental dysplasia of the hip patients following total hip arthroplasty with the surgical technique using the concept of combined anteversion: a study of Crowe I and II patients. J Arthroplasty 30(12):2248–2255. https://doi.org/10.1016/j.arth.2015.06.056

Article  PubMed  Google Scholar 

Ueoka K, Kabata T, Kajino Y, Yoshitani J, Ueno T, Tsuchiya H (2019) The accuracy of the computed tomography-based navigation system in total hip arthroplasty is comparable with Crowe type IV and Crowe type I dysplasia: a case-control study. J Arthroplasty 34(11):2686–2691. https://doi.org/10.1016/j.arth.2019.06.002

Article  PubMed  Google Scholar 

Yi C, Ma C, Wang Q, Zhang G, Cao Y (2013) Acetabular configuration and its impact on cup coverage of a subtype of Crowe type 4 DDH with bi-pseudoacetabulum. Hip Int 23(2):135–142. https://doi.org/10.5301/hipint.5000015

Article  PubMed  Google Scholar 

Hasegawa Y, Iwase T, Kan

Comments (0)

No login
gif