Jacobsen S, Sonne-Holm S, Soballe K, Gebuhr P, Lund B (2005) Hip dysplasia and osteoarthrosis: a survey of 4151 subjects from the Osteoarthrosis Substudy of the Copenhagen City Heart Study. Acta Orthop 76(2):149–158. https://doi.org/10.1080/00016470510030517
Pivec R, Johnson AJ, Mears SC, Mont MA (2012) Hip arthroplasty. Lancet 380(9855):1768–1777. https://doi.org/10.1016/s0140-6736(12)60607-2
Sakemi Y, Komiyama K, Yoshimoto K, Shiomoto K, Iwamoto M, Nakashima Y (2019) How does anteroposterior cup placement affect bone coverage and range of motion in primary total hip arthroplasty for hip dysplasia? J Orthop Sci 24(2):269–274. https://doi.org/10.1016/j.jos.2018.08.019
Karaismailoglu B, Erdogan F, Kaynak G (2019) High hip center reduces the dynamic hip range of motion and increases the hip load: a gait analysis study in hip arthroplasty patients with unilateral developmental dysplasia. J Arthroplasty 34(6):1267 72 e1. https://doi.org/10.1016/j.arth.2019.02.017
Komiyama K, Nakashima Y, Hirata M, Hara D, Kohno Y, Iwamoto Y (2016) Does high hip center decrease range of motion in total hip arthroplasty? A computer simulation study J Arthroplasty 31(10):2342–2347. https://doi.org/10.1016/j.arth.2016.03.014
Xu J, Xu C, Mao Y, Zhang J, Li H, Zhu Z (2016) Posterosuperior placement of a standard-sized cup at the true acetabulum in acetabular reconstruction of developmental dysplasia of the hip with high dislocation. J Arthroplasty 31(6):1233–1239. https://doi.org/10.1016/j.arth.2015.12.019
Ding Z-c, Zeng W-n, Mou P, Liang Z-m, Wang D, Zhou Z-k (2020) Risk of dislocation after total hip arthroplasty in patients with Crowe type IV developmental dysplasia of the hip. Orthop Surg 12(2):589–600. https://doi.org/10.1111/os.12665
Article PubMed PubMed Central Google Scholar
Livermore J, Ilstrup D, Morrey B (1990) Effect of femoral head size on wear of the polyethylene acetabular component. J Bone Joint Surg Am 72(4):518–28
Article CAS PubMed Google Scholar
Lusty PJ, Tai CC, Sew-Hoy RP, Walter WL, Walter WK, Zicat BA (2007) Third-generation alumina-on-alumina ceramic bearings in cementless total hip arthroplasty. JBJS 89(12):2676–2683. https://doi.org/10.2106/jbjs.F.01466
Petsatodis GE, Papadopoulos PP, Papavasiliou KA, Hatzokos IG, Agathangelidis FG, Christodoulou AG (2010) Primary cementless total hip arthroplasty with an alumina ceramic-on-ceramic bearing: results after a minimum of twenty years of follow-up. JBJS 92(3):639–644. https://doi.org/10.2106/jbjs.H.01829
Meermans G, Van Doorn WJ, Koenraadt K, Kats J (2014) The use of the transverse acetabular ligament for determining the orientation of the components in total hip replacement. Bone Joint J 96-B(3):312–8. https://doi.org/10.1302/0301-620X.96B3.32989
Article CAS PubMed Google Scholar
Karachalios T, Hartofilakidis G (2010) Congenital hip disease in adults. J Bone Joint Surg British 92-B(7):914–21. https://doi.org/10.1302/0301-620X.92B7.24114
Mathew G, Agha R, Albrecht J, Goel P, Mukherjee I, Pai P et al (2021) STROCSS 2021: Strengthening the reporting of cohort, cross-sectional and case-control studies in surgery. Int J Surg 96:106165. https://doi.org/10.1016/j.ijsu.2021.106165
Crowe JF, Mani VJ, Ranawat CS (1979) Total hip replacement in congenital dislocation and dysplasia of the hip. J Bone Joint Surg Am 61(1):15–23
Article CAS PubMed Google Scholar
Nie Y, Pei F, Shen B, Kang P, Li Z (2015) Implication of acetabular width on the anteroposterior pelvic radiograph of patients with developmental dysplasia of the hip. J Arthroplasty 30(3):489–494. https://doi.org/10.1016/j.arth.2014.09.024
Li H, Wang L, Dai K, Zhu Z (2013) Autogenous impaction grafting in total hip arthroplasty with developmental dysplasia of the hip. J Arthroplasty 28(4):637–643. https://doi.org/10.1016/j.arth.2012.07.007
Fukushi JI, Kawano I, Motomura G, Hamai S, Kawaguchi KI, Nakashima Y (2018) Does hip center location affect the recovery of abductor moment after total hip arthroplasty? Orthop Traumatol Surg Res 104(8):1149–1153. https://doi.org/10.1016/j.otsr.2018.06.022
Yang Y, Zuo J, Liu T, Xiao J, Liu S, Gao Z (2017) Morphological analysis of true acetabulum in hip dysplasia (Crowe classes I-IV) via 3-D implantation simulation. J Bone Joint Surg Am 99(17):e92. https://doi.org/10.2106/JBJS.16.00729
Shen J, Sun J, Ma H, Du Y, Li T, Zhou Y (2020) High hip center technique in total hip arthroplasty for Crowe type II-III developmental dysplasia: results of midterm follow-up. Orthop Surg 12(4):1245–1252. https://doi.org/10.1111/os.12756
Article PubMed PubMed Central Google Scholar
Liu B, Gao YH, Ding L, Li SQ, Liu JG, Qi X (2018) Computed tomographic evaluation of bone stock in patients with Crowe type III developmental dysplasia of the hip: implications for guiding acetabular component placement using the high hip center technique. J Arthroplasty 33(3):915–918. https://doi.org/10.1016/j.arth.2017.10.021
Jamari J, Anwar IB, Saputra E, van der Heide E (2017) Range of motion simulation of hip joint movement during salat activity. J Arthroplasty 32(9):2898–2904. https://doi.org/10.1016/j.arth.2017.03.056
Article CAS PubMed Google Scholar
Bunn A, Colwell CW Jr, D’Lima DD (2012) Bony impingement limits design-related increases in hip range of motion. Clin Orthop Relat Res 470(2):418–427. https://doi.org/10.1007/s11999-011-2096-3
Incavo SJ, Gold JE, Exaltacion JJ, Thompson MT, Noble PC (2011) Does acetabular retroversion affect range of motion after total hip arthroplasty? Clin Orthop Relat Res 469(1):218–224. https://doi.org/10.1007/s11999-010-1482-6
Renkawitz T, Weber M, Springorum HR, Sendtner E, Woerner M, Ulm K et al (2015) Impingement-free range of movement, acetabular component cover and early clinical results comparing “femur-first” navigation and “conventional” minimally invasive total hip arthroplasty: a randomised controlled trial. Bone Joint J 97-b(7):890–8. https://doi.org/10.1302/0301-620x.97b7.34729
Article CAS PubMed Google Scholar
Jóźwiak M, Rychlik M, Musielak B, Chen BP-J, Idzior M, Grzegorzewski A (2015) An accurate method of radiological assessment of acetabular volume and orientation in computed tomography spatial reconstruction. BMC Musculoskelet Disord 16(1):42. https://doi.org/10.1186/s12891-015-0503-8
Article PubMed PubMed Central Google Scholar
Huang Y-F, Gao Y-H, Li Y-R, Ding L, Liu J-G, Qi X (2020) Assessment of pelvic morphology using 3D imaging and analysis in unilateral Crowe-IV developmental dysplasia of the hip. Bone Joint J 102-B(10):1311–8. https://doi.org/10.1302/0301-620X.102B10.BJJ-2020-0317.R1
Hu Y, Zou D, Sun Q, Jiang M, Li H, Tsai T-Y, Zhang J (2022) Postoperative hip center position associated with the range of internal rotation and extension during gait in hip dysplasia patients after total hip arthroplasty. Front Bioeng Biotechnol 10:831647. https://doi.org/10.3389/fbioe.2022.831647
Zhang J, Wei J, Mao Y, Li H, Xie Y, Zhu Z (2015) Range of hip joint motion in developmental dysplasia of the hip patients following total hip arthroplasty with the surgical technique using the concept of combined anteversion: a study of Crowe I and II patients. J Arthroplasty 30(12):2248–2255. https://doi.org/10.1016/j.arth.2015.06.056
Ueoka K, Kabata T, Kajino Y, Yoshitani J, Ueno T, Tsuchiya H (2019) The accuracy of the computed tomography-based navigation system in total hip arthroplasty is comparable with Crowe type IV and Crowe type I dysplasia: a case-control study. J Arthroplasty 34(11):2686–2691. https://doi.org/10.1016/j.arth.2019.06.002
Yi C, Ma C, Wang Q, Zhang G, Cao Y (2013) Acetabular configuration and its impact on cup coverage of a subtype of Crowe type 4 DDH with bi-pseudoacetabulum. Hip Int 23(2):135–142. https://doi.org/10.5301/hipint.5000015
Hasegawa Y, Iwase T, Kan
Comments (0)