Schöggl J, Siegert S, Boltshauser E, Freilinger M, Schmidt WM. A De Novo Missense NPTX1 Variant in an Individual with Infantile-Onset Cerebellar Ataxia. Mov Disord. 2022;37:1774–6.
Article PubMed PubMed Central Google Scholar
Coutelier M, Jacoupy M, Janer A, Renaud F, Auger N, Saripella GV, et al. NPTX1 mutations trigger endoplasmic reticulum stress and cause autosomal dominant cerebellar ataxia. Brain. 2022;145:1519–34.
De Castilhos RM, Furtado GV, Gheno TC, Schaeffer P, Russo A, Barsottini O, et al. Spinocerebellar ataxias in Brazil - Frequencies and modulating effects of related genes. Cerebellum. 2014;13:17–28.
Article CAS PubMed Google Scholar
Takiyama Y, Nishizawa M, Tanaka H, Kawashima S, Sakamoto H, Karube Y, et al. The gene for Machado–Joseph disease maps to human chromosome 14q. Nat Genet. 1993;4:300–4.
Article CAS PubMed Google Scholar
Stevanin G, Cancel G, Durr A, Chneiweiss H, Dubourg O, Weissenbach J, et al. The gene for spinal cerebellar ataxia 3 (SCA3) is located in a region of ~3 cM on chromosome 14q24.3-q32.2. Am J Hum Genet. 1995;56:193–201.
CAS PubMed PubMed Central Google Scholar
Moro A, Munhoz RP, Arruda WO, Raskin S, Moscovich M, Teive HAG. Spinocerebellar ataxia type 3: Subphenotypes in a cohort of brazilian patients. Arq Neuropsiquiatr. 2014;72:659–62.
Jacobi H, Bauer P, Giunti P, Labrum R, Sweeney MG, Charles P, et al. The natural history of spinocerebellar ataxia type 1, 2, 3, and 6: A 2-year follow-up study. Neurology. 2011;77:1035–41.
Article CAS PubMed PubMed Central Google Scholar
Matsuura T, Fang P, Pearson CE, Jayakar P, Ashizawa T, Roa BB, et al. Interruptions in the expanded ATTCT repeat of spinocerebellar ataxia type 10: Repeat purity as a disease modifier? Am J Hum Genet. 2006;78:125–9.
Article CAS PubMed Google Scholar
Raskin S, Ashizawa T, Teive HAG, Arruda WO, Fang P, Gao R, et al. Reduced penetrance in a Brazilian family with spinocerebellar ataxia type 10. Arch Neurol. 2007;64:591–4.
Teive HAG, Ashizawa T. Spinocerebellar ataxia type 10: From amerindians to latin americans. Curr Neurol Neurosci Rep. 2013;13:9–11.
Rasmussen A, Matsuura T, Ruano L, Yescas P, Ochoa A, Ashizawa T, et al. Clinical and genetic analysis of four Mexican families with spinocerebellar ataxia type 10. Ann Neurol. 2001;50:234–9.
Article CAS PubMed Google Scholar
Matsuura T, Ranum LPW, Volpini V, Pandolfo M, Sasaki H, Tashiro K, et al. Spinocerebellar ataxia type 10 is rare in populations other than Mexicans. Neurology. 2002;58:983–4.
Article CAS PubMed Google Scholar
Gheno TC, Furtado GV, Saute JAM, Donis KC, Fontanari AMV, Emmel VE, et al. Spinocerebellar ataxia type 10: common haplotype and disease progression rate in Peru and Brazil. Eur J Neurol. 2017;24:892–e36.
Article CAS PubMed Google Scholar
Véliz-Otani D, Cubas-Montecino D, Milla-Neyra K, Ashizawa T, Saraiva-Pereira ML, Jardim LB, et al. Response to ATXN10 Microsatellite Distribution in a Peruvian Amerindian Population. Cerebellum. 2021;20:946–7.
Teive HAG, Munhoz RP, Raskin S, Arruda WO, de Paola L, Werneck LC, et al. Spinocerebellar ataxia type 10: Frequency of epilepsy in a large sample of Brazilian patients. Mov Disord. 2010;25:2875–8.
Article PubMed PubMed Central Google Scholar
Ashizawa T, Xia G. Ataxia Articles from Continuum : Lifelong Learning in Neurology are provided here courtesy of American Academy of Neurology. Contin Mineap Minn. 2016;22:1208–26.
Matsushima A, Yoshida K, Genno H, Murata A, Matsuzawa S, Nakamura K, et al. Clinical assessment of standing and gait in ataxic patients using a triaxial accelerometer. Cerebellum Ataxias. 2015;2:1–7.
Buckley E, Mazzà C, McNeill A. A systematic review of the gait characteristics associated with Cerebellar Ataxia. Gait Posture. 2018;60:154–63.
Geritz J, Maetzold S, Steffen M, Pilotto A, Corrà MF, Moscovich M, et al. Motor, cognitive and mobility deficits in 1000 geriatric patients: protocol of a quantitative observational study before and after routine clinical geriatric treatment - The ComOn-study. BMC Geriatr. 2020;20:1–13.
Donath L, Faude O, Lichtenstein E, Nuesch C, Mündermann A. Validity and reliability of a portable gait analysis system for measuring spatiotemporal gait characteristics: Comparison to an instrumented treadmill. J NeuroEngineering Rehabil. 2016;13:1–9.
Nüesch C, Roos E, Pagenstert G, Mündermann A. Measuring joint kinematics of treadmill walking and running: Comparison between an inertial sensor based system and a camera-based system. J Biomech. 2017;57:32–8. https://doi.org/10.1016/j.jbiomech.2017.03.015.
Bettecken K, Bernhard F, Sartor J, Hobert MA, Hofmann M, Gladow T, et al. No relevant association of kinematic gait parameters with Health-related Quality of Life in Parkinson’s disease. PLoS ONE. 2017;12:1–11.
Pham MH, Warmerdam E, Elshehabi M, Schlenstedt C, Bergeest LM, Heller M, et al. Validation of a lower back “wearable”-based sit-to-stand and stand-to-sit algorithm for patients with Parkinson’s disease and older adults in a home-like environment. Front Neurol. 2018;9:1–11.
Pham MH, Elshehabi M, Haertner L, Del Din S, Srulijes K, Heger T, et al. Validation of a step detection algorithm during straight walking and turning in Patients with Parkinson’s disease and older adults using an inertial measurement unit at the lower back. Front Neurol. 2017;8:1–9.
Metzger FG, Hobert MA, Ehlis AC, Hasmann SE, Hahn T, Eschweiler GW, et al. Dual tasking for the differentiation between depression and mild cognitive impairment. Front Aging Neurosci. 2016;8:1–9.
Hobert MA, Meyer SI, Hasmann SE, Metzger FG, Suenkel U, Eschweiler GW, et al. Gait is associated with cognitive flexibility: A dual-tasking study in healthy older people. Front Aging Neurosci. 2017;9:1–9.
Salkovic D, Hobert MA, Bellut C, Funer F, Renno S, Haertner L, et al. Evidence for a Selectively Regulated Prioritization Shift Depending on Walking Situations in Older Adults. Front Aging Neurosci. 2017;9:1–9.
Del Din S, Elshehabi M, Galna B, Hobert MA, Warmerdam E, Suenkel U, et al. Gait analysis with wearables predicts conversion to parkinson disease. Ann Neurol. 2019;86:357–67.
Article PubMed PubMed Central Google Scholar
Kressig RW, Beauchet O, Gaitrite E, Group N. Guidelines for clinical applications of spatio-temporal. Aging Clin Exp Res. 2005;18:174–6.
Bock O, Engelhard K, Guardiera P, Allmer H, Kleinert J. Gerontechnology and human cognition. IEEE Eng Med Biol Mag. 2008;27:23–8.
Schniepp R, Wuehr M, Neuhaeusser M, Kamenova M, Dimitriadis K, Klopstock T, et al. Locomotion speed determines gait variability in cerebellar ataxia and vestibular failure. Mov Disord. 2012;27:125–31.
Braga-Neto P, Godeiro-Junior C, Dutra LA, Pedroso JL, Barsottini OGP. Translation and validation into Brazilian version of the Scale of the Assessment and Rating of Ataxia (SARA). Arq Neuropsiquiatr. 2010;68:228–30.
Camargos FFO, Dias RC, Dias JMD, Freire MTF. Cross-cultural adaptation and evaluation of the psychometric properties of the Falls Efficacy Scale-International Among Elderly Brazilians (FES-I-BRAZIL). Rev Bras Fisioter Sao Carlos Sao Paulo Braz. 2010;14:237–43.
Miyamoto ST, Lombardi I, Berg KO, Ramos LR, Natour J. Brazilian version of the Berg balance scale. Braz J Med Biol Res. 2004;37:1411–21.
Article CAS PubMed Google Scholar
Minosso JSM, Amendola F, Alvarenga MRM, de Oliveira MAC. Validação, no Brasil, do Índice de Barthel em idosos atendidos em ambulatórios. Acta Paul Enferm. 2010;23:218–23.
Sarmento ALR. Apresentação e aplicabilidade da versão brasileira da MoCA (Montreal Cognitive Assessment) para rastreio de Comprometimento Cognitivo Leve. Master's thesis, Universidade Federal de São Paulo. 2009.
Comments (0)