Myocardial motion in acute ischemia: revealing invisible deformation by echocardiography

Nesto RW, Kowalchuk GJ. The ischemic cascade: temporal sequence of hemodynamic, electrocardiographic and symptomatic expressions of ischemia. Am J Cardiol. 1987;57:23C−30C.

Article  Google Scholar 

Quiñones MA, Verani MS, Haichin RM, et al. Exercise echocardiography versus 201Tl single-photon emission computed tomography in evaluation of coronary artery disease: analysis of 292 patients. Circulation. 1992;85:1026–31.

Article  PubMed  Google Scholar 

Hioki A, Asanuma T, Masuda K, et al. Detection of abnormal myocardial deformation during acute myocardial ischemia using three-dimensional speckle tracking echocardiography. J Echocardiogr. 2020;18:57–66.

Article  PubMed  Google Scholar 

Tsai WC, Liu YW, Huang YY, et al. Diagnostic value of segmental longitudinal strain by automated function imaging in coronary artery disease without left ventricular dysfunction. J Am Soc Echocardiogr. 2010;23:1183–9.

Article  PubMed  Google Scholar 

Kusunose K, Yamada H, Nishio S, et al. Validation of longitudinal peak systolic strain by speckle tracking echocardiography with visual assessment and myocardial perfusion SPECT in patients with regional asynergy. Circ J. 2011;75:141–7.

Article  PubMed  Google Scholar 

Dahlslett T, Karlsen S, Grenne B, et al. Early assessment of strain echocardiography can accurately exclude significant coronary artery stenosis in suspected non-ST-segment elevation acute coronary syndrome. J Am Soc Echocardiogr. 2014;27:512–9.

Article  PubMed  Google Scholar 

Shimoni S, Gendelman G, Ayzenberg O, et al. Differential effects of coronary artery stenosis on myocardial function: the value of myocardial strain analysis for the detection of coronary artery disease. J Am Soc Echocardiogr. 2011;24:748–57.

Article  PubMed  Google Scholar 

Marwick TH, Leano RL, Brown J, et al. Myocardial strain measurement with 2-dimensional speckle-tracking echocardiography: definition of normal range. JACC Cardiovasc Imaging. 2009;2:80–4.

Article  PubMed  Google Scholar 

Mirea O, Pagourelias ED, Duchenne J, et al. Variability and reproducibility of segmental longitudinal strain measurement: a report from the EACVI-ASE strain standardization task force. JACC Cardiovasc Imaging. 2018;11:15–24.

Article  PubMed  Google Scholar 

Shiran A, Blondheim DS, Shimoni S, et al. Two-dimensional strain echocardiography for diagnosing chest pain in the emergency room: a multicentre prospective study by the Israeli echo research group. Eur Heart J Cardiovasc Imaging. 2017;18:1016–24.

Article  PubMed  Google Scholar 

Asanuma T, Nakatani S. Myocardial ischaemia and post-systolic shortening. Heart. 2015;101:509–16.

Article  PubMed  Google Scholar 

Adachi H, Asanuma T, Masuda K, et al. Deterioration of longitudinal, circumferential, and radial myocardial strains during acute coronary flow reduction: which direction of strain should be analyzed for early detection? Int J Cardiovasc Imaging. 2020;36:1725–35.

Article  PubMed  Google Scholar 

Masuda K, Asanuma T, Taniguchi A, et al. Assessment of dyssynchronous wall motion during acute myocardial ischemia using velocity vector imaging. JACC Cardiovasc Imaging. 2008;1:210–20.

Article  PubMed  Google Scholar 

Ihara T, Komamura K, Shen YT, et al. Left ventricular systolic dysfunction precedes diastolic dysfunction during myocardial ischemia in conscious dogs. Am J Physiol. 1994;267:H333–43.

CAS  PubMed  Google Scholar 

Okuda K, Asanuma T, Hirano T, et al. Impact of the coronary flow reduction at rest on myocardial perfusion and functional indices derived from myocardial contrast and strain echocardiography. J Am Soc Echocardiogr. 2006;19:781–7.

Article  PubMed  Google Scholar 

Claus P, Weidemann F, Dommke C, et al. Mechanisms of postsystolic thickening in ischemic myocardium: mathematical modelling and comparison with experimental ischemic substrates. Ultrasound Med Biol. 2007;33:1963–70.

Article  PubMed  Google Scholar 

Shaw RM, Rudy Y. Electrophysiologic effects of acute myocardial ischemia: a theoretical study of altered cell excitability and action potential duration. Cardiovasc Res. 1997;35:256–72.

Article  CAS  PubMed  Google Scholar 

Skulstad H, Edvardsen T, Urheim S, et al. Postsystolic shortening in ischemic myocardium: active contraction or passive recoil? Circulation. 2002;106:718–24.

Article  PubMed  Google Scholar 

Akaishi M, Schneider RM, Seelaus PA, et al. A non-linear elastic model of contraction of ischaemic segments. Cardiovasc Res. 1988;22:889–99.

Article  CAS  PubMed  Google Scholar 

Sengupta PP. Exploring left ventricular isovolumic shortening and stretch mechanics: “The heart has its reasons…”. JACC Cardiovasc Imaging. 2009;2:212–5.

Article  PubMed  Google Scholar 

Voigt JU, Lindenmeier G, Exner B, et al. Incidence and characteristics of segmental postsystolic longitudinal shortening in normal, acutely ischemic, and scarred myocardium. J Am Soc Echocardiogr. 2003;16:415–23.

Article  PubMed  Google Scholar 

Voigt JU, Exner B, Schmiedehausen K, et al. Strain-rate imaging during dobutamine stress echocardiography provides objective evidence of inducible ischemia. Circulation. 2003;107:2120–6.

Article  PubMed  Google Scholar 

Onishi T, Uematsu M, Nanto S, et al. Detection of diastolic abnormality by dyssynchrony imaging: correlation with coronary artery disease in patients presenting with visibly normal wall motion. Circ J. 2009;73:125–31.

Article  PubMed  Google Scholar 

Onishi T, Uematsu M, Watanabe T, et al. Objective interpretation of dobutamine stress echocardiography by diastolic dyssynchrony imaging: a practical approach. J Am Soc Echocardiogr. 2010;23:1103–8.

Article  PubMed  Google Scholar 

Brainin P, Hoffmann S, Fritz-Hansen T, et al. Usefulness of postsystolic shortening to diagnose coronary artery disease and predict future cardiovascular events in stable angina pectoris. J Am Soc Echocardiogr. 2018;31:870–9.

Article  PubMed  Google Scholar 

Masada K, Hidaka T, Urabe Y, et al. Usefulness of post-systolic index in facilitating stratification of risk in patients with intermediate- or low-risk non-ST-segment elevation acute coronary syndrome. J Echocardiogr. 2023;21:157–64.

Article  PubMed  Google Scholar 

Smedsrud MK, Sarvari S, Haugaa KH, et al. Duration of myocardial early systolic lengthening predicts the presence of significant coronary artery disease. J Am Coll Cardiol. 2012;60:1086–93.

Article  PubMed  Google Scholar 

Mirea O, Pagourelias ED, Duchenne J, et al. Intervendor differences in the accuracy of detecting regional functional abnormalities: a report from the EACVI-ASE strain standardization task force. JACC Cardiovasc Imaging. 2018;11:25–34.

Article  PubMed  Google Scholar 

Celutkiene J, Zakarkaite D, Skorniakov V, et al. Quantitative approach using multiple single parameters versus visual assessment in dobutamine stress echocardiography. Cardiovasc Ultrasound. 2012;10:31.

Article  PubMed  PubMed Central  Google Scholar 

Uusitalo V, Luotolahti M, Pietilä M, et al. Two-dimensional speckle-tracking during dobutamine stress echocardiography in the detection of myocardial ischemia in patients with suspected coronary artery disease. J Am Soc Echocardiogr. 2016;29:470–9.

Article  PubMed  Google Scholar 

Ishigaki T, Asanuma T, Yagi N, et al. Incremental value of early systolic lengthening and postsystolic shortening in detecting left anterior descending artery stenosis using nonstress speckle-tracking echocardiography. Sci Rep. 2021;11:19359.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Asanuma T, Uranishi A, Masuda K, et al. Assessment of myocardial ischemic memory using persistence of post-systolic thickening after recovery from ischemia. JACC Cardiovasc Imaging. 2009;2:1253–61.

Article  PubMed  Google Scholar 

Asanuma T, Fukuta Y, Masuda K, et al. Assessment of myocardial ischemic memory using speckle tracking echocardiography. JACC Cardiovasc Imaging. 2012;5:1–11.

Article  PubMed  Google Scholar 

Sakurai D, Asanuma T, Masuda K, et al. Myocardial layer-specific analysis of ischemic memory using speckle tracking echocardiography. Int J Cardiovasc Imaging. 2014;30:739–48.

Article  PubMed  Google Scholar 

Kozuma A, Asanuma T, Masuda K, et al. Assessment of myocardial ischemic memory using three-dimensional speckle-tracking echocardiography: a novel integrated analysis of early systolic lengthening and postsystolic shortening. J Am Soc Echocardiogr. 2019;32:1477–86.

Article  PubMed  Google Scholar 

Masuda K, Asanuma T, Sakurai D, et al. Afterload augmentation can reveal concealed myocardial ischemic memory. JACC Cardiovasc Imaging. 2018;11:1727–9.

Article  PubMed  Google Scholar 

Comments (0)

No login
gif