Ahmar S, Mahmood T, Fiaz S, Mora-Poblete F, Shafique MS, Chattha MS, Jung KH. Advantage of nanotechnology-based genome editing system and its application in crop improvement. Front Plant Sci. 2021;12:663849. https://doi.org/10.3389/fpls.2021.663849.
Article PubMed PubMed Central Google Scholar
Al-Shayeb B, Skopintsev P, Soczek KM, Stahl EC, Li Z, Groover E, Smock D, Eggers AR, Pausch P, Cress BF, Huang CJ, Staskawicz B, Savage DF, Jacobsen SE, Banfield JF, Doudna JA. Diverse virus-encoded CRISPR-Cas systems include streamlined genome editors. Cell. 2022;185(24):4574–86. https://doi.org/10.1016/j.cell.2022.10.020.
Article CAS PubMed Google Scholar
Baltes NJ, Gil-Humanes J, Voytas DF. Genome engineering and agriculture: opportunities and challenges. Prog Mol Biol Transl Sci. 2017;149:1–26. https://doi.org/10.1016/bs.pmbts.2017.03.011.
Article CAS PubMed PubMed Central Google Scholar
Bansal KC, Molla KA, Chinusamy V. Genome editing: a boon for plant biologists, breeders and farmers. Curr Sci. 2022;123(1):5.
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315(5819):1709–12. https://doi.org/10.1126/science.1138140.
Article CAS PubMed Google Scholar
Baur P. When farmers are pulled in too many directions: comparing institutional drivers of food safety and environmental sustainability in california agriculture. Agric Hum Values Hum Values. 2020;37:1175–94. https://doi.org/10.1007/s10460-020-10123-8.
Buchholzer M, Frommer WB. An increasing number of countries regulate genome editing in crops. New Phytol. 2023;237(1):12–5. https://doi.org/10.1111/nph.18333.
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23. https://doi.org/10.1126/science.1231143.
Article CAS PubMed PubMed Central Google Scholar
FAO. Gene editing and agrifood systems. Rome: FAO; 2022. p. 86.
FAO I, UNICEF, WFP, WHO. The state of food security and nutrition in the world 2023 Urbanization, agrifood systems transformation and healthy diets across the rural–urban continuum. Rome: FAO; 2023. p. 316.
Gaj T, Gersbach CA, Barbas CF 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397–405. https://doi.org/10.1016/j.tibtech.2013.04.004.
Article CAS PubMed PubMed Central Google Scholar
Gallego-Bartolome J. DNA methylation in plants: mechanisms and tools for targeted manipulation. New Phytol. 2020. https://doi.org/10.1111/nph.16529.
Gao C. Precision plant breeding using genome editing technologies. Transgenic Res. 2019;28(Suppl 2):53–5. https://doi.org/10.1007/s11248-019-00132-7.
Article CAS PubMed Google Scholar
Gardiner J, Ghoshal B, Wang M, Jacobsen SE. CRISPR-Cas-mediated transcriptional control and epi-mutagenesis. Plant Physiol. 2022;188(4):1811–24. https://doi.org/10.1093/plphys/kiac033.
Article CAS PubMed PubMed Central Google Scholar
Gelvin SB. Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev. 2003;67(1):16–37. https://doi.org/10.1128/MMBR.67.1.16-37.2003.
Article CAS PubMed PubMed Central Google Scholar
Graff GD, Sherkow JS. Models of technology transfer for genome-editing technologies. Annu Rev Genomics Hum Genet. 2020;21:509–34. https://doi.org/10.1146/annurev-genom-121119-100145.
Article CAS PubMed Google Scholar
Gu X, Liu L, Zhang H. Transgene-free genome editing in plants. Front Genome Ed. 2021;3:805317. https://doi.org/10.3389/fgeed.2021.805317.
Article PubMed PubMed Central Google Scholar
Hartung F, Schiemann J. Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. Plant J. 2014;78(5):742–52. https://doi.org/10.1111/tpj.12413.
Article CAS PubMed Google Scholar
He Y, Zhao Y. Technological breakthroughs in generating transgene-free and genetically stable CRISPR-edited plants. aBIOTECH. 2020;1(1):88–96. https://doi.org/10.1007/s42994-019-00013-x.
Huang S, Weigel D, Beachy RN, Li J. A proposed regulatory framework for genome-edited crops. Nat Genet. 2016;48(2):109–11. https://doi.org/10.1038/ng.3484.
Article CAS PubMed Google Scholar
Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169(12):5429–33. https://doi.org/10.1128/jb.169.12.5429-5433.1987.
Article CAS PubMed PubMed Central Google Scholar
Jansen R, Embden JD, Gaastra W, Schouls LW. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 2002;43:1565–75. https://doi.org/10.1046/j.1365-2958.2002.02839.x.
Article CAS PubMed Google Scholar
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21. https://doi.org/10.1126/science.1225829.
Article CAS PubMed PubMed Central Google Scholar
Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA-programmed genome editing in human cells. Elife. 2013;2:e00471. https://doi.org/10.7554/eLife.00471.
Article CAS PubMed PubMed Central Google Scholar
Karmakar S, Das P, Panda D, Xie K, Baig MJ, Molla KA. A detailed landscape of CRISPR-Cas-mediated plant disease and pest management. Plant Sci. 2022;323:111376. https://doi.org/10.1016/j.plantsci.2022.111376.
Article CAS PubMed Google Scholar
Koonin EV, Makarova KS, Zhang F. Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol. 2017;37:67–78. https://doi.org/10.1016/j.mib.2017.05.008.
Article CAS PubMed PubMed Central Google Scholar
Kuiken T, Barrangou R, Grieger K. (Broken) Promises of sustainable food and agriculture through new biotechnologies: the CRISPR case. The CRISPR J. 2021. https://doi.org/10.1089/crispr.2020.0098.
Kumar M, Prusty MR, Pandey MK, Singh PK, Bohra A, Guo B, Varshney RK. Application of CRISPR/Cas9-mediated gene editing for abiotic stress management in crop plants. Front Plant Sci. 2023;14:1157678. https://doi.org/10.3389/fpls.2023.1157678.
Article PubMed PubMed Central Google Scholar
Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol. 2013;31(8):688–91. https://doi.org/10.1038/nbt.2654.
Article CAS PubMed PubMed Central Google Scholar
Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. 2005;60(2):174–82. https://doi.org/10.1007/s00239-004-0046-3.
Article CAS PubMed Google Scholar
Muller R, Clare A, Feiler J, Marco N. Between a rock and a hard place. EMBO Rep. 2021;22(7):e53205.
Article PubMed PubMed Central Google Scholar
Muller R, Feiler J, Clare A. A doomed technology? On gene editing in bavarian livestock agriculture, policy field conflicts and responsible research and innovation. Front Polit Sci. 2022. https://doi.org/10.3389/fpos.2022.800211.
Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013;31(8):691–3. https://doi.org/10.1038/nbt.2655.
Article CAS PubMed Google Scholar
Nelissen H, Moloney M, Inze D. Translational research: from pot to plot. Plant Biotechnol J. 2014;12(3):277–85. https://doi.org/10.1111/pbi.12176.
Nonaka S, Arai C, Takayama M, Matsukura C, Ezura H. Efficient increase of ɣ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Sci Rep. 2017;7(1):7057. https://doi.org/10.1038/s41598-017-06400-y.
Comments (0)