A birds-eye-view on CRISPR-Cas system in agriculture

Ahmar S, Mahmood T, Fiaz S, Mora-Poblete F, Shafique MS, Chattha MS, Jung KH. Advantage of nanotechnology-based genome editing system and its application in crop improvement. Front Plant Sci. 2021;12:663849. https://doi.org/10.3389/fpls.2021.663849.

Article  PubMed  PubMed Central  Google Scholar 

Al-Shayeb B, Skopintsev P, Soczek KM, Stahl EC, Li Z, Groover E, Smock D, Eggers AR, Pausch P, Cress BF, Huang CJ, Staskawicz B, Savage DF, Jacobsen SE, Banfield JF, Doudna JA. Diverse virus-encoded CRISPR-Cas systems include streamlined genome editors. Cell. 2022;185(24):4574–86. https://doi.org/10.1016/j.cell.2022.10.020.

Article  CAS  PubMed  Google Scholar 

Baltes NJ, Gil-Humanes J, Voytas DF. Genome engineering and agriculture: opportunities and challenges. Prog Mol Biol Transl Sci. 2017;149:1–26. https://doi.org/10.1016/bs.pmbts.2017.03.011.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bansal KC, Molla KA, Chinusamy V. Genome editing: a boon for plant biologists, breeders and farmers. Curr Sci. 2022;123(1):5.

Google Scholar 

Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315(5819):1709–12. https://doi.org/10.1126/science.1138140.

Article  CAS  PubMed  Google Scholar 

Baur P. When farmers are pulled in too many directions: comparing institutional drivers of food safety and environmental sustainability in california agriculture. Agric Hum Values Hum Values. 2020;37:1175–94. https://doi.org/10.1007/s10460-020-10123-8.

Article  Google Scholar 

Buchholzer M, Frommer WB. An increasing number of countries regulate genome editing in crops. New Phytol. 2023;237(1):12–5. https://doi.org/10.1111/nph.18333.

Article  PubMed  Google Scholar 

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23. https://doi.org/10.1126/science.1231143.

Article  CAS  PubMed  PubMed Central  Google Scholar 

FAO. Gene editing and agrifood systems. Rome: FAO; 2022. p. 86.

Google Scholar 

FAO I, UNICEF, WFP, WHO. The state of food security and nutrition in the world 2023 Urbanization, agrifood systems transformation and healthy diets across the rural–urban continuum. Rome: FAO; 2023. p. 316.

Google Scholar 

Gaj T, Gersbach CA, Barbas CF 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397–405. https://doi.org/10.1016/j.tibtech.2013.04.004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gallego-Bartolome J. DNA methylation in plants: mechanisms and tools for targeted manipulation. New Phytol. 2020. https://doi.org/10.1111/nph.16529.

Article  PubMed  Google Scholar 

Gao C. Precision plant breeding using genome editing technologies. Transgenic Res. 2019;28(Suppl 2):53–5. https://doi.org/10.1007/s11248-019-00132-7.

Article  CAS  PubMed  Google Scholar 

Gardiner J, Ghoshal B, Wang M, Jacobsen SE. CRISPR-Cas-mediated transcriptional control and epi-mutagenesis. Plant Physiol. 2022;188(4):1811–24. https://doi.org/10.1093/plphys/kiac033.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gelvin SB. Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev. 2003;67(1):16–37. https://doi.org/10.1128/MMBR.67.1.16-37.2003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Graff GD, Sherkow JS. Models of technology transfer for genome-editing technologies. Annu Rev Genomics Hum Genet. 2020;21:509–34. https://doi.org/10.1146/annurev-genom-121119-100145.

Article  CAS  PubMed  Google Scholar 

Gu X, Liu L, Zhang H. Transgene-free genome editing in plants. Front Genome Ed. 2021;3:805317. https://doi.org/10.3389/fgeed.2021.805317.

Article  PubMed  PubMed Central  Google Scholar 

Hartung F, Schiemann J. Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. Plant J. 2014;78(5):742–52. https://doi.org/10.1111/tpj.12413.

Article  CAS  PubMed  Google Scholar 

He Y, Zhao Y. Technological breakthroughs in generating transgene-free and genetically stable CRISPR-edited plants. aBIOTECH. 2020;1(1):88–96. https://doi.org/10.1007/s42994-019-00013-x.

Article  PubMed  Google Scholar 

Huang S, Weigel D, Beachy RN, Li J. A proposed regulatory framework for genome-edited crops. Nat Genet. 2016;48(2):109–11. https://doi.org/10.1038/ng.3484.

Article  CAS  PubMed  Google Scholar 

Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169(12):5429–33. https://doi.org/10.1128/jb.169.12.5429-5433.1987.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jansen R, Embden JD, Gaastra W, Schouls LW. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 2002;43:1565–75. https://doi.org/10.1046/j.1365-2958.2002.02839.x.

Article  CAS  PubMed  Google Scholar 

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21. https://doi.org/10.1126/science.1225829.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA-programmed genome editing in human cells. Elife. 2013;2:e00471. https://doi.org/10.7554/eLife.00471.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karmakar S, Das P, Panda D, Xie K, Baig MJ, Molla KA. A detailed landscape of CRISPR-Cas-mediated plant disease and pest management. Plant Sci. 2022;323:111376. https://doi.org/10.1016/j.plantsci.2022.111376.

Article  CAS  PubMed  Google Scholar 

Koonin EV, Makarova KS, Zhang F. Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol. 2017;37:67–78. https://doi.org/10.1016/j.mib.2017.05.008.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuiken T, Barrangou R, Grieger K. (Broken) Promises of sustainable food and agriculture through new biotechnologies: the CRISPR case. The CRISPR J. 2021. https://doi.org/10.1089/crispr.2020.0098.

Article  PubMed  Google Scholar 

Kumar M, Prusty MR, Pandey MK, Singh PK, Bohra A, Guo B, Varshney RK. Application of CRISPR/Cas9-mediated gene editing for abiotic stress management in crop plants. Front Plant Sci. 2023;14:1157678. https://doi.org/10.3389/fpls.2023.1157678.

Article  PubMed  PubMed Central  Google Scholar 

Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol. 2013;31(8):688–91. https://doi.org/10.1038/nbt.2654.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. 2005;60(2):174–82. https://doi.org/10.1007/s00239-004-0046-3.

Article  CAS  PubMed  Google Scholar 

Muller R, Clare A, Feiler J, Marco N. Between a rock and a hard place. EMBO Rep. 2021;22(7):e53205.

Article  PubMed  PubMed Central  Google Scholar 

Muller R, Feiler J, Clare A. A doomed technology? On gene editing in bavarian livestock agriculture, policy field conflicts and responsible research and innovation. Front Polit Sci. 2022. https://doi.org/10.3389/fpos.2022.800211.

Article  Google Scholar 

Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013;31(8):691–3. https://doi.org/10.1038/nbt.2655.

Article  CAS  PubMed  Google Scholar 

Nelissen H, Moloney M, Inze D. Translational research: from pot to plot. Plant Biotechnol J. 2014;12(3):277–85. https://doi.org/10.1111/pbi.12176.

Article  PubMed  Google Scholar 

Nonaka S, Arai C, Takayama M, Matsukura C, Ezura H. Efficient increase of ɣ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Sci Rep. 2017;7(1):7057. https://doi.org/10.1038/s41598-017-06400-y.

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif