Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, Shmakov S, Makarova KS, Semenova E, Minakhin L, Severinov K. C2c2 is a single component programmable RNA-guided RNA targeting CRISPR effector. Science. 2016;353:aaf573. https://doi.org/10.1126/science.aaf5573.
Agarwal N, Gupta R. History, evolution and classification of CRISPR–Cas associated systems. Prog Mol Biol Transl Sci. 2021;179:11–76.
Article CAS PubMed Google Scholar
Alphey L. Genetic control of mosquitoes. Annu Rev Entomol. 2014;59(1):205–24. https://doi.org/10.1146/annurev-ento-011613-162002.
Article CAS PubMed Google Scholar
Barrangou R, Horvath P. A decade of discovery: CRISPR functions and applications. Nat Microbiol. 2017;2:17092. https://doi.org/10.1038/nmicrobiol.2017.92.
Article CAS PubMed Google Scholar
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315(5819):1709–12. https://doi.org/10.1126/science.1138140.
Article CAS PubMed Google Scholar
Basgall EM, Goetting SC, Goeckel ME, Giersch RM, Roggenkamp E, Schrock MN, Halloran M, Finnigan GC. Gene drive inhibition by the Anti-CRISPR proteins AcrIIA2 and AcrIIA4 in Saccharomyces cerevisiae. Microbiology. 2018;164(4):464. https://doi.org/10.1099/mic.0.000635.
Article CAS PubMed PubMed Central Google Scholar
Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology. 2005;151(8):2551–61.
Article CAS PubMed Google Scholar
Bondy-Denomy J, Davidson AR, Doudna JA, Fineran PC, Maxwell KL, Moineau S, Peng X, Sontheimer EJ, Wiedenheft B. A unified resource for tracking anti-CRISPR names. CRISPR J l. 2018;1(5):304–5. https://doi.org/10.1089/crispr.2018.0043.
Bondy-Denomy J, Garcia B, Strum S, Du M, Rollins MF, Hidalgo-Reyes Y, Wiedenheft B, Maxwell KL, Davidson AR. Multiple mechanisms for CRISPR–Cas inhibition by Anti-CRISPR proteins. Nature. 2015;526(7571):136–9. https://doi.org/10.1038/nature15254.
Article CAS PubMed PubMed Central Google Scholar
Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature. 2013;493(7432):429–32. https://doi.org/10.1038/nature11723.
Article CAS PubMed Google Scholar
Borges AL, Davidson AR, Bondy-Denomy J. The discovery, mechanisms, and evolutionary impact of anti-CRISPRs. Annu Rev Virol. 2017;4(1):37. https://doi.org/10.1146/annurev-virology-101416-041616.
Article CAS PubMed PubMed Central Google Scholar
Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV, Van Der Oost J. Small CRISPR RNAs guide Antiviral defense in prokaryotes. Science. 2008;321(5891):960–4. https://doi.org/10.1016/j.molcel.2011.12.013.
Article CAS PubMed PubMed Central Google Scholar
Bubeck F, Hoffmann MD, Harteveld Z, Aschenbrenner S, Bietz A, Waldhauer MC, Börner K, Fakhiri J, Schmelas C, Dietz L, Grimm D. Engineered Anti-CRISPR proteins for optogenetic control of CRISPR–Cas9. Nat Methods. 2018;15(11):924–7. https://doi.org/10.1038/s41592-018-0178-9.
Article CAS PubMed Google Scholar
Chew WL, Tabebordbar M, Cheng JK, Mali P, Wu EY, Ng AH, Zhu K, Wagers AJ, Church GM. A multifunctional AAV–CRISPR–Cas9 and its host response. Nat Methods. 2016;13(10):868–74. https://doi.org/10.1038/nmeth.3993.
Article CAS PubMed PubMed Central Google Scholar
Chowdhury S, Carter J, Rollins MF, Golden SM, Jackson RN, Hoffmann C, Bondy-Denomy J, Maxwell KL, Davidson AR, Fischer ER, Lander GC, Wiedenheft B. The structure reveals mechanisms of viral suppressors that intercept a CRISPR RNA-guided surveillance complex. Cell. 2017;169(1):47–57. https://doi.org/10.1016/j.cell.2017.03.012.
Article CAS PubMed PubMed Central Google Scholar
Datsenko KA, Pougach K, Tikhonov A, Wanner BL, Severinov K, Semenova E. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat Commun. 2012;3(1):1–7. https://doi.org/10.1038/ncomms1937.
Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011;471:602–7. https://doi.org/10.1038/nature09886.
Article CAS PubMed PubMed Central Google Scholar
Deveau H, Garneau JE, Moineau S. CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol. 2010;64:475–93. https://doi.org/10.1146/annurev.micro.112408.134123.
Article CAS PubMed Google Scholar
Dong D, Guo M, Wang S, Zhu Y, Wang S, Xiong Z, Yang J, Xu Z, Huang Z. Structural basis of CRISPR–SpyCas9 inhibition by an anti-CRISPR protein. Nature. 2017;546(7658):436–9. https://doi.org/10.1038/nature22377.
Article CAS PubMed Google Scholar
Dong D, Ren K, Qiu X, Zheng J, Guo M, Guan X, Liu H, Li N, Zhang B, Yang D, Ma C. The crystal structure of Cpf1 in complex with CRISPR RNA. Nature. 2016;532:522–6. https://doi.org/10.1038/nature17944.
Article CAS PubMed Google Scholar
Dong L, Guan X, Li N, Zhang F, Zhu Y, Ren K, Yu L, Zhou F, Han Z, Gao N, Huang Z. An anti-CRISPR protein disables type V Cas12a by acetylation. Nat Struct Mol Biol. 2019;26(4):308–14. https://doi.org/10.1038/s41594-019-0206-1.
Article CAS PubMed Google Scholar
Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR–Cas9. Science. 2014;346:1258096. https://doi.org/10.1126/science.1258096.
Article CAS PubMed Google Scholar
Fineran PC, Charpentier E. Memory of viral infections by CRISPR–Cas adaptive immune systems: acquisition of new information. Virology. 2012;434(2):202–9. https://doi.org/10.1016/j.virol.2012.10.003.
Article CAS PubMed Google Scholar
Forsberg KJ, Bhatt IV, Schmidtke DT, Javanmardi K, Dillard KE, Stoddard BL, Finkelstein IJ, Kaiser BK, Malik HS. Functional metagenomics-guided discovery of potent Cas9 inhibitors in the human microbiome. eLife. 2019;8:e46540. https://doi.org/10.7554/eLife.46540.
Article PubMed PubMed Central Google Scholar
Forsberg KJ, Schmidtke DT, Werther R, Uribe RV, Hausman D, Sommer MO, Stoddard BL, Kaiser BK, Malik HS (2020) AcrIIA22 is a novel Anti-CRISPR that impairs SpyCas9 activity by relieving DNA torsion of target plasmids. bioRxiv. https://doi.org/10.1101/2020.09.28.317578.
Fuchsbauer O, Swuec P, Zimberger C, Amigues B, Levesque S, Agudelo D, Duringer A, Chaves-Sanjuan A, Spinelli S, Rousseau GM, Velimirovic M. Cas9 allosteric inhibition by the Anti-CRISPR protein AcrIIA6. Mol Cell. 2019;76(6):922–37. https://doi.org/10.1016/j.molcel.2019.09.012.
Article CAS PubMed Google Scholar
Gabel C, Li Z, Zhang H, Chang L. Structural basis for inhibition of the type IF CRISPR–Cas surveillance complex by AcrIF4, AcrIF7, and AcrIF14. Nucleic Acids Res. 2021;49(1):584–94. https://doi.org/10.1093/nar/gkaa1199.
Article CAS PubMed Google Scholar
Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM, Bier E, James AA. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci. 2015;112(49):E6736–43. https://doi.org/10.1073/pnas.1521077112.
Article CAS PubMed PubMed Central Google Scholar
Garneau JE, Dupuis MÈ, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH, Moineau S. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 2010;468(7320):67–71. https://doi.org/10.1038/nature09523.
Article CAS PubMed Google Scholar
Glonti T, Chanishvili N, Taylor PW. Bacteriophage-derived enzyme that depolymerizes the alginic acid capsule associated with cystic fibrosis isolates of Pseudomonas aeruginosa. J Appl Microbiol. 2010;108(2):695–702. https://doi.org/10.1111/j.1365-2672.2009.04469.x.
Article CAS PubMed Google Scholar
Guo TW, Bartesaghi A, Yang H, Falconieri V, Rao P, Merk A, Eng ET, Raczkowski AM, Fox T, Earl LA, Patel DJ. Cryo-EM structures reveal the mechanism and inhibition of DNA targeting by a CRISPR–Cas surveillance complex. Cell. 2017;171(2):414–26. https://doi.org/10.1016/j.cell.2017.09.006.
Article CAS PubMed PubMed Central Google Scholar
Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C, Katsanos D, Gribble M, Baker D, Marois E, Russell S, Burt A. A CRISPR–Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat Biotechnol. 2016;34(1):78–83. https://doi.org/10.1038/nbt.3439.
Comments (0)