Gene editing tool kit in millets: present status and future directions

Abudayyeh OO, Gootenberg JS, Franklin B, Koob J, Kellner MJ, Ladha A, et al. A cytosine deaminase for programmable single-base RNA editing. Science. 2019;365:382–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aher RR, Reddy PS, Bhunia RK, Flyckt KS, Shankhapal AR, Ojha R, et al. Loss-of-function of triacylglycerol lipases are associated with low flour rancidity in pearl millet [Pennisetum glaucum (L.) R. Br.]. Front Plant Sci. 2022;13:962667.

Article  PubMed  PubMed Central  Google Scholar 

Alam MS, Kong J, Tao R, Ahmed T, Alamin M, Alotaibi SS, et al. CRISPR/Cas9 mediated knockout of the OsbHLH024 transcription factor improves salt stress resistance in rice (Oryza sativa L.). Plants. 2022;11:1184.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alfatih A, Wu J, Jan SU, Zhang Z-S, Xia J-Q, Xiang C-B. Loss of rice paraquat tolerance 3 confers enhanced resistance to abiotic stresses and increases grain yield in field. Plant Cell Environ. 2020;43:2743–54.

Article  CAS  PubMed  Google Scholar 

Annor GA, Tyl C, Marcone M, Ragaee S, Marti A. Why do millets have slower starch and protein digestibility than other cereals? Trends Food Sci Technol. 2017;66:73–83.

Article  CAS  Google Scholar 

Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576:149–57.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Assem SK, Basry MA, Taha TA, Abd El-Aziz MH, Alwa T, Fouad WM. Development of an in vitro regeneration system from immature inflorescences and CRISPR/Cas9-mediated gene editing in sudangrass. J Genet Eng Biotechnol. 2023;21:58.

Article  PubMed  PubMed Central  Google Scholar 

Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315:1709–12.

Article  CAS  PubMed  Google Scholar 

Bartlett JG, Alves SC, Smedley M, Snape JW, Harwood WA. High-throughput Agrobacterium-mediated barley transformation. Plant Methods. 2008;4:22.

Article  PubMed  PubMed Central  Google Scholar 

Basso MF, Duarte KE, Santiago TR, de Souza WR, de Oliveira GB, da Cunha BDB, et al. Efficient genome editing and gene knockout in Setaria viridis with CRISPR/Cas9 directed gene editing by the non-homologous end-joining pathway. Plant Biotechnol. 2021;38:227–38.

Article  CAS  Google Scholar 

Begemann MB, Gray BN, January E, Gordon GC, He Y, Liu H, et al. Precise insertion and guided editing of higher plant genomes using Cpf1 CRISPR nucleases. Sci Rep. 2017;7:11606.

Article  PubMed  PubMed Central  Google Scholar 

Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V. Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods. 2013;9:39.

Article  PubMed  PubMed Central  Google Scholar 

Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, et al. Reference genome sequence of the model plant Setaria. Nat Biotechnol. 2012;30:555–61.

Article  CAS  PubMed  Google Scholar 

Bernard G, Gagneul D, Santos HAD, Etienne A, Hilbert J-L, Rambaud C. Efficient genome editing using CRISPR/Cas9 technology in chicory. Int J Mol Sci. 2019;20:1155.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small rnas for adaptive defense and regulation. Annu Rev Genet. 2011;45:273–97.

Article  CAS  PubMed  Google Scholar 

Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, et al. Ectopic expression of baby boom triggers a conversion from vegetative to embryonic growth. Plant Cell. 2002;14:1737–49.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brant EJ, Baloglu MC, Parikh A, Altpeter F. CRISPR/Cas9 mediated targeted mutagenesis of LIGULELESS-1 in sorghum provides a rapidly scorable phenotype by altering leaf inclination angle. Biotechnol J. 2021;16:2100237.

Article  CAS  Google Scholar 

Brink M, Belay G. Plant resources of tropical Africa. 1, Cereals and pulses. Wageningen: PROTA foundation : Backhuys : CTA; 2006.

Butt H, Eid A, Momin AA, Bazin J, Crespi M, Arold ST, et al. CRISPR directed evolution of the spliceosome for resistance to splicing inhibitors. Genome Biol. 2019;20:73.

Article  PubMed  PubMed Central  Google Scholar 

Butt H, Rao GS, Sedeek K, Aman R, Kamel R, Mahfouz M. Engineering herbicide resistance via prime editing in rice. Plant Biotechnol J. 2020;18:2370.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cannarozzi G, Plaza-Wüthrich S, Esfeld K, Larti S, Wilson YS, Girma D, et al. Genome and transcriptome sequencing identifies breeding targets in the orphan crop tef (Eragrostis tef). BMC Genomics. 2014;15:581.

Article  PubMed  PubMed Central  Google Scholar 

Cao XiaoNing CX, Wang JunJie WJ, Wang HaiGang WH, Liu SiChen LS, Chen Ling CL, Tian Xiang TX, et al. The complete chloroplast genome of Panicum miliaceum. Mitochondrial DNA Part B. 2017. https://doi.org/10.5555/20183160368.

Article  PubMed  PubMed Central  Google Scholar 

Ceasar A. Genome-editing in millets: current knowledge and future perspectives. Mol Biol Rep. 2022;49:773–81.

Article  CAS  PubMed  Google Scholar 

Char SN, Wei J, Mu Q, Li X, Zhang ZJ, Yu J, et al. An Agrobacterium-delivered CRISPR/Cas9 system for targeted mutagenesis in sorghum. Plant Biotechnol J. 2020;18:319.

Article  PubMed  Google Scholar 

Charrier A, Vergne E, Dousset N, Richer A, Petiteau A, Chevreau E. (2019) Efficient targeted mutagenesis in apple and first time edition of pear using the system. Front Plant Sci. 10, 40

Che P, Anand A, Wu E, Sander JD, Simon MK, Zhu W, et al. Developing a flexible, high-efficiency Agrobacterium -mediated sorghum transformation system with broad application. Plant Biotechnol J. 2018;16:1388–95.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Che P, Wu E, Simon MK, Anand A, Lowe K, Gao H, et al. Wuschel2 enables highly efficient CRISPR/Cas-targeted genome editing during rapid de novo shoot regeneration in sorghum. Commun Biol. 2022;5:344.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen HQ, Liu HY, Wang K, Zhang SX, Ye XG. Development and innovation of haploid induction technologies in plants. Yi Chuan Hered. 2020;42:466–82.

Google Scholar 

Chen J, Liu Y, Liu M, Guo W, Wang Y, He Q, et al. Pangenome analysis reveals genomic variations associated with domestication traits in broomcorn millet. Nat Genet. 2023;55:2243–54.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen K, Wang Y, Zhang R, Zhang H, Gao C. CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture. Annu Rev Plant Biol. 2019;70:667–97.

Article  CAS  PubMed  Google Scholar 

Chen W, Zheng Y, Wang J, Wang Z, Yang Z, Chi X, et al. Ethylene-responsive SbWRKY50 suppresses leaf senescence by inhibition of chlorophyll degradation in sorghum. New Phytol. 2023;238:1129–45.

Article  CAS  PubMed  Google Scholar 

Chen Z, Debernardi JM, Dubcovsky J, Gallavotti A. The combination of morphogenic regulators BABY BOOM and GRF-GIF improves maize transformation efficiency. Biorxiv. 2022;2022–09:506370.

Google Scholar 

Cheng Y, Zhang Y, Li G, Fang H, Sretenovic S, Fan A, et al. CRISPR–Cas12a base editors confer efficient multiplexed genome editing in rice. Plant Commun. 2023;4:4.

Article  Google Scholar 

Cheng Z, Sun Y, Yang S, Zhi H, Yin T, Ma X, et al. Establishing in planta haploid inducer line by edited SiMTL in foxtail millet (Setaria italica). Plant Biotechnol J. 2021;19:1089.

Article  PubMed  PubMed Central  Google Scholar 

Chow RD, Chen JS, Shen J, Chen S. A web tool for the design of prime-editing guide RNAs. Nat Biomed Eng. 2021;5:190–4.

Article  CAS  PubMed  Google Scholar 

Christensen AH, Quail PH. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res. 1996;5:213–8.

Article  CAS  PubMed  Google Scholar 

Christensen AH, Sharrock RA, Quail PH. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol. 1992;18:675–89.

Article  CAS  PubMed  Google Scholar 

Concordet J-P, Haeussler M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 2018;46:W242–5.

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif