Abudayyeh OO, Gootenberg JS, Franklin B, Koob J, Kellner MJ, Ladha A, et al. A cytosine deaminase for programmable single-base RNA editing. Science. 2019;365:382–6.
Article CAS PubMed PubMed Central Google Scholar
Aher RR, Reddy PS, Bhunia RK, Flyckt KS, Shankhapal AR, Ojha R, et al. Loss-of-function of triacylglycerol lipases are associated with low flour rancidity in pearl millet [Pennisetum glaucum (L.) R. Br.]. Front Plant Sci. 2022;13:962667.
Article PubMed PubMed Central Google Scholar
Alam MS, Kong J, Tao R, Ahmed T, Alamin M, Alotaibi SS, et al. CRISPR/Cas9 mediated knockout of the OsbHLH024 transcription factor improves salt stress resistance in rice (Oryza sativa L.). Plants. 2022;11:1184.
Article CAS PubMed PubMed Central Google Scholar
Alfatih A, Wu J, Jan SU, Zhang Z-S, Xia J-Q, Xiang C-B. Loss of rice paraquat tolerance 3 confers enhanced resistance to abiotic stresses and increases grain yield in field. Plant Cell Environ. 2020;43:2743–54.
Article CAS PubMed Google Scholar
Annor GA, Tyl C, Marcone M, Ragaee S, Marti A. Why do millets have slower starch and protein digestibility than other cereals? Trends Food Sci Technol. 2017;66:73–83.
Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576:149–57.
Article CAS PubMed PubMed Central Google Scholar
Assem SK, Basry MA, Taha TA, Abd El-Aziz MH, Alwa T, Fouad WM. Development of an in vitro regeneration system from immature inflorescences and CRISPR/Cas9-mediated gene editing in sudangrass. J Genet Eng Biotechnol. 2023;21:58.
Article PubMed PubMed Central Google Scholar
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315:1709–12.
Article CAS PubMed Google Scholar
Bartlett JG, Alves SC, Smedley M, Snape JW, Harwood WA. High-throughput Agrobacterium-mediated barley transformation. Plant Methods. 2008;4:22.
Article PubMed PubMed Central Google Scholar
Basso MF, Duarte KE, Santiago TR, de Souza WR, de Oliveira GB, da Cunha BDB, et al. Efficient genome editing and gene knockout in Setaria viridis with CRISPR/Cas9 directed gene editing by the non-homologous end-joining pathway. Plant Biotechnol. 2021;38:227–38.
Begemann MB, Gray BN, January E, Gordon GC, He Y, Liu H, et al. Precise insertion and guided editing of higher plant genomes using Cpf1 CRISPR nucleases. Sci Rep. 2017;7:11606.
Article PubMed PubMed Central Google Scholar
Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V. Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods. 2013;9:39.
Article PubMed PubMed Central Google Scholar
Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, et al. Reference genome sequence of the model plant Setaria. Nat Biotechnol. 2012;30:555–61.
Article CAS PubMed Google Scholar
Bernard G, Gagneul D, Santos HAD, Etienne A, Hilbert J-L, Rambaud C. Efficient genome editing using CRISPR/Cas9 technology in chicory. Int J Mol Sci. 2019;20:1155.
Article CAS PubMed PubMed Central Google Scholar
Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small rnas for adaptive defense and regulation. Annu Rev Genet. 2011;45:273–97.
Article CAS PubMed Google Scholar
Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, et al. Ectopic expression of baby boom triggers a conversion from vegetative to embryonic growth. Plant Cell. 2002;14:1737–49.
Article CAS PubMed PubMed Central Google Scholar
Brant EJ, Baloglu MC, Parikh A, Altpeter F. CRISPR/Cas9 mediated targeted mutagenesis of LIGULELESS-1 in sorghum provides a rapidly scorable phenotype by altering leaf inclination angle. Biotechnol J. 2021;16:2100237.
Brink M, Belay G. Plant resources of tropical Africa. 1, Cereals and pulses. Wageningen: PROTA foundation : Backhuys : CTA; 2006.
Butt H, Eid A, Momin AA, Bazin J, Crespi M, Arold ST, et al. CRISPR directed evolution of the spliceosome for resistance to splicing inhibitors. Genome Biol. 2019;20:73.
Article PubMed PubMed Central Google Scholar
Butt H, Rao GS, Sedeek K, Aman R, Kamel R, Mahfouz M. Engineering herbicide resistance via prime editing in rice. Plant Biotechnol J. 2020;18:2370.
Article CAS PubMed PubMed Central Google Scholar
Cannarozzi G, Plaza-Wüthrich S, Esfeld K, Larti S, Wilson YS, Girma D, et al. Genome and transcriptome sequencing identifies breeding targets in the orphan crop tef (Eragrostis tef). BMC Genomics. 2014;15:581.
Article PubMed PubMed Central Google Scholar
Cao XiaoNing CX, Wang JunJie WJ, Wang HaiGang WH, Liu SiChen LS, Chen Ling CL, Tian Xiang TX, et al. The complete chloroplast genome of Panicum miliaceum. Mitochondrial DNA Part B. 2017. https://doi.org/10.5555/20183160368.
Article PubMed PubMed Central Google Scholar
Ceasar A. Genome-editing in millets: current knowledge and future perspectives. Mol Biol Rep. 2022;49:773–81.
Article CAS PubMed Google Scholar
Char SN, Wei J, Mu Q, Li X, Zhang ZJ, Yu J, et al. An Agrobacterium-delivered CRISPR/Cas9 system for targeted mutagenesis in sorghum. Plant Biotechnol J. 2020;18:319.
Charrier A, Vergne E, Dousset N, Richer A, Petiteau A, Chevreau E. (2019) Efficient targeted mutagenesis in apple and first time edition of pear using the system. Front Plant Sci. 10, 40
Che P, Anand A, Wu E, Sander JD, Simon MK, Zhu W, et al. Developing a flexible, high-efficiency Agrobacterium -mediated sorghum transformation system with broad application. Plant Biotechnol J. 2018;16:1388–95.
Article CAS PubMed PubMed Central Google Scholar
Che P, Wu E, Simon MK, Anand A, Lowe K, Gao H, et al. Wuschel2 enables highly efficient CRISPR/Cas-targeted genome editing during rapid de novo shoot regeneration in sorghum. Commun Biol. 2022;5:344.
Article CAS PubMed PubMed Central Google Scholar
Chen HQ, Liu HY, Wang K, Zhang SX, Ye XG. Development and innovation of haploid induction technologies in plants. Yi Chuan Hered. 2020;42:466–82.
Chen J, Liu Y, Liu M, Guo W, Wang Y, He Q, et al. Pangenome analysis reveals genomic variations associated with domestication traits in broomcorn millet. Nat Genet. 2023;55:2243–54.
Article CAS PubMed PubMed Central Google Scholar
Chen K, Wang Y, Zhang R, Zhang H, Gao C. CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture. Annu Rev Plant Biol. 2019;70:667–97.
Article CAS PubMed Google Scholar
Chen W, Zheng Y, Wang J, Wang Z, Yang Z, Chi X, et al. Ethylene-responsive SbWRKY50 suppresses leaf senescence by inhibition of chlorophyll degradation in sorghum. New Phytol. 2023;238:1129–45.
Article CAS PubMed Google Scholar
Chen Z, Debernardi JM, Dubcovsky J, Gallavotti A. The combination of morphogenic regulators BABY BOOM and GRF-GIF improves maize transformation efficiency. Biorxiv. 2022;2022–09:506370.
Cheng Y, Zhang Y, Li G, Fang H, Sretenovic S, Fan A, et al. CRISPR–Cas12a base editors confer efficient multiplexed genome editing in rice. Plant Commun. 2023;4:4.
Cheng Z, Sun Y, Yang S, Zhi H, Yin T, Ma X, et al. Establishing in planta haploid inducer line by edited SiMTL in foxtail millet (Setaria italica). Plant Biotechnol J. 2021;19:1089.
Article PubMed PubMed Central Google Scholar
Chow RD, Chen JS, Shen J, Chen S. A web tool for the design of prime-editing guide RNAs. Nat Biomed Eng. 2021;5:190–4.
Article CAS PubMed Google Scholar
Christensen AH, Quail PH. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res. 1996;5:213–8.
Article CAS PubMed Google Scholar
Christensen AH, Sharrock RA, Quail PH. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol. 1992;18:675–89.
Article CAS PubMed Google Scholar
Concordet J-P, Haeussler M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 2018;46:W242–5.
Comments (0)