Abdullah J, Saffie N, Sjasri FAR, et al. Rapid detection of Salmonella Typhi by loop-mediated isothermal amplification (LAMP) method. Braz J Microbiol. 2014;45:1385–91. https://doi.org/10.1590/S1517-83822014000400032.
Article CAS PubMed Google Scholar
Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science (1979). 2016;353(6299):aaf5573. https://doi.org/10.1126/science.aaf5573
Ackerman CM, Myhrvold C, Thakku SG, et al. Massively multiplexed nucleic acid detection with Cas13. Nature. 2020;582(7811):277–82. https://doi.org/10.1038/s41586-020-2279-8.
Article CAS PubMed PubMed Central Google Scholar
Adiger S, Sridevi O. Isolation of DNA from mucilage-rich okra (Abelmoschus esculentus L.) for PCR analysis. Trends Biosci. 2014;7(16):2306–9.
Ali Z, Aman R, Mahas A, et al. iSCAN: an RT-LAMP-coupled CRISPR-Cas12 module for rapid, sensitive detection of SARS-CoV-2. Virus Res. 2020;288: 198129. https://doi.org/10.1016/j.virusres.2020.198129.
Article CAS PubMed Google Scholar
Ali Z, Sánchez E, Tehseen M, et al. Bio-SCAN: a CRISPR/dCas9-based lateral flow assay for rapid, specific, and sensitive detection of SARS-CoV-2. ACS Synth Biol. 2022;11(1):406–19. https://doi.org/10.1021/acssynbio.1c00499.
Aman R, Mahas A, Mahfouz M. Nucleic acid detection using CRISPR/Cas biosensing technologies. ACS Synth Biol. 2020;9(6):1226–33. https://doi.org/10.1021/acssynbio.9b00507.
Article CAS PubMed Google Scholar
Aquino-Jarquin G. CRISPR-Cas14 is now part of the artillery for gene editing and molecular diagnostic. Nanomedicine. 2019;18:428–31. https://doi.org/10.1016/j.nano.2019.03.006.
Article CAS PubMed Google Scholar
Arizti-Sanz J, Freije CA, Stanton AC, et al. Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2. Nat Commun. 2020;11(1):1–9. https://doi.org/10.1038/s41467-020-19097-x.
Augustine R, Hasan A, Das S, et al. Loop-mediated isothermal amplification (LAMP): a rapid, sensitive, specific, and cost-effective point-of-care test for coronaviruses in the context of COVID-19 pandemic. Biology (Basel). 2020;9(8):182. https://doi.org/10.3390/biology9080182.
Article CAS PubMed Google Scholar
Azhar M, Phutela R, Kumar M, et al. Rapid and accurate nucleobase detection using FnCas9 and its application in COVID-19 diagnosis. Biosens Bioelectron. 2021;183:113207. https://doi.org/10.1016/j.bios.2021.113207.
Article CAS PubMed PubMed Central Google Scholar
Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science (1979). 2007;315(5819):1709–12. https://doi.org/10.1126/science.1138140
Bayraç C, Eyidoğan F, Öktem HA. DNA aptamer-based colorimetric detection platform for Salmonella enteritidis. Biosens Bioelectron. 2017;98:22–8. https://doi.org/10.1016/j.bios.2017.06.029.
Article CAS PubMed Google Scholar
Bianchi V, Boni A, Bassoli M, et al. IoT and biosensors: a smart portable potentiostat with advanced cloud-enabled features. IEEE Access. 2021;9:141544–54. https://doi.org/10.1109/ACCESS.2021.3120022.
Biosciences M. Diagnostics-the CRISPR-based detection platform. Mammoth Biosci. 2020;[Cited 1 July 2020]. n.d.
Broto M, Kaminski MM, Adrianus C, et al. Nanozyme-catalysed CRISPR assay for preamplification-free detection of non-coding RNAs. Nat Nanotechnol. 2022;1–7. https://doi.org/10.1038/s41565-022-01179-0.
Broughton JP, Deng X, Yu G, et al. CRISPR–Cas12-based detection of SARS-CoV-2. Nat Biotechnol. 2020;38(7):870–4. https://doi.org/10.1038/s41587-020-0513-4.
Article CAS PubMed PubMed Central Google Scholar
Bruch R, Baaske J, Chatelle C, et al. CRISPR/Cas13a-powered electrochemical microfluidic biosensor for nucleic acid amplification-free miRNA diagnostics. Adv Mater. 2019;31(51):1905311. https://doi.org/10.1002/adma.201905311.
Cao H, Mao K, Ran F, et al. Paper device combining CRISPR/Cas12a and reverse-transcription loop-mediated isothermal amplification for SARS-CoV-2 detection in wastewater. Environ Sci Technol. 2022;56(18):13245–53. https://doi.org/10.1021/acs.est.2c04727.
Article CAS PubMed Google Scholar
Chakraborty S, Newton AC. Climate change, plant diseases and food security: an overview. Plant Pathol. 2011;60(1):2–14. https://doi.org/10.1111/j.1365-3059.2010.02411.x.
Chen JS, Ma E, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science (1979). 2018;360(6387):436–9. https://doi.org/10.1126/science.aar6245.
Cui F, Zhou HS. Diagnostic methods and potential portable biosensors for coronavirus disease 2019. Biosens Bioelectron. 2020;165:112349. https://doi.org/10.1016/j.bios.2020.112349.
Article CAS PubMed PubMed Central Google Scholar
Dai G, Li Z, Luo F, et al. Electrochemical determination of Salmonella typhimurium by using aptamer-loaded gold nanoparticles and a composite prepared from a metal-organic framework (type UiO-67) and graphene. Microchim Acta. 2019;186:1–9. https://doi.org/10.1007/s00604-019-3724-y.
de Puig H, Lee RA, Najjar D, et al. Minimally instrumented SHERLOCK (miSHERLOCK) for CRISPR-based point-of-care diagnosis of SARS-CoV-2 and emerging variants. Sci Adv. 2021;7(32):eabh2944. https://doi.org/10.1126/sciadv.abh2944.
Ding X, Yin K, Li Z, et al. Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay. Nat Commun. 2020;11(1):1–10. https://doi.org/10.1038/s41467-020-18575-6.
Domesle KJ, Yang Q, Hammack TS, et al. Validation of a Salmonella loop-mediated isothermal amplification assay in animal food. Int J Food Microbiol. 2018;264:63–76. https://doi.org/10.1016/j.ijfoodmicro.2017.10.020.
Article CAS PubMed Google Scholar
Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science (1979). 2014;346(6213):1258096. https://doi.org/10.1126/science.125809
English MA, Soenksen LR, Gayet R V, et al. Programmable CRISPR-responsive smart materials. Science (1979). 2019;365(6455):780–5. https://doi.org/10.1126/science.aaw5122.
Fozouni P, Son S, de León Derby MD, et al. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell. 2021;184(2):323–33. https://doi.org/10.1016/j.cell.2020.12.001.
Article CAS PubMed Google Scholar
Ghouneimy A, Mahfouz M. Streamlined detection of SARS-CoV-2 via Cas13. Nat Biomed Eng. 2022;6(8):925–7. https://doi.org/10.1038/s41551-022-00926-x.
Article CAS PubMed Google Scholar
Ghouneimy A, Ali Z, Aman R, Jiang W, Aouida M, Mahfouz M. CRISPR-based multiplex detection of human papillomaviruses for one-pot point-of-care diagnostics. ACS Synth Biol. 2024;13:837–50. https://doi.org/10.1021/acssynbio.3c00655.
Article CAS PubMed Google Scholar
Gootenberg JS, Abudayyeh OO, Kellner MJ, et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science (1979). 2018;360(6387):439–44. https://doi.org/10.1126/science.aam9321.
Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science (1979). 2017;356(6336):438–42. https://doi.org/10.1126/science.aam9321.
Graham J, McNicol RJ, McNicol JW. A comparison of methods for the estimation of genetic diversity in strawberry cultivars. Theor Appl Genet. 1996;93(3):402–6. https://doi.org/10.1007/BF00223182.
Article CAS PubMed Google Scholar
Hajian R, Balderston S, Tran T, et al. Detection of unamplified target genes via CRISPR–Cas9 immobilized on a graphene field-effect transistor. Nat Biomed Eng. 2019;3(6):427–37. https://doi.org/10.1038/s41551-019-0371-x.
Article CAS PubMed PubMed Central Google Scholar
Hajime S, Yuya T, Asami M, et al. Amplification-free RNA detection with CRISPR–Cas13. Commun Biol. 2021;4(1). https://doi.org/10.1038/s42003-021-02001-8.
Harrington LB, Burstein D, Chen JS, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science (1979). 2018;362(6416):839–42. https://doi.org/10.1126/science.aav4294.
Hille F, Charpentier E. CRISPR-Cas: biology, mechanisms and relevance. Philos Trans R Soc B Biol Sci. 2016;371(1707):20150496. https://doi.org/10.1098/rstb.2015.0496.
Huang D, Ni D, Fang M, et al. Microfluidic ruler-readout and CRISPR Cas12a-responded hydrogel-integrated paper-based analytical devices (μReaCH-PAD) for visible quantitative point-of-care testing of invasive fungi. Anal Chem. 2021;93(50):16965–73. https://doi.org/10.1021/acs.analchem.1c04649.
Article CAS PubMed Google Scholar
Huang L, Ding L, Zhou J, et al. One-step rapid quantification of SARS-CoV-2 virus particles via low-cost nanoplasmonic sensors in generic microplate reader and point-of-care device. Biosens Bioelectron. 2021;171:112685. https://doi.org/10.1016/j.bios.2020.112685.
Article CAS PubMed Google Scholar
Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169(12):5429–33. https://doi.org/10.1128/jb.169.12.5429-5433.1987.
Article CAS PubMed PubMed Central Google Scholar
Islam MT, Croll D, Gladieux P, et al. Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biol. 2016;14(1):84. https://doi.org/10.1186/s12915-016-0309-7.
Article PubMed PubMed Central Google Scholar
Islam T, Kasfy SH. CRISPR-based point-of-care plant disease diagnostics. Trends Biotechnol. 2022;41(2):144–6. https://doi.org/10.1016/j.tibtech.2022.10.002.
Jiao C, Sharma S, Dugar G, et al. Noncanonical crRNAs derived from host transcripts enable multiplexable RNA detection by Cas9. Science (1979). 2021;372(6545):941–8. https://doi.org/10.1126/science.abe7106.
Jinek M, Chylinski K, Fonfara I, et al. A programmable dual RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 1979;2012:337. https://doi.org/10.1126/science.1225829.
Comments (0)