Bagchi, S., Yuan, R. & Engleman, E. G. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu. Rev. Pathol. 16, 223–249 (2021).
Article CAS PubMed Google Scholar
Blasutig, I. M. et al. The phoenix rises: the rebirth of cancer immunotherapy. Clin. Chem. 63, 1190–1195 (2017).
Article CAS PubMed Google Scholar
Abi-Aad, S. J., Zouein, J., Chartouni, A., Naim, N. & Kourie, H. R. Simultaneous inhibition of PD-1 and LAG-3: the future of immunotherapy? Immunotherapy 15, 611–618 (2023).
Article CAS PubMed Google Scholar
Tawbi, H. A. et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N. Engl. J. Med. 386, 24–34 (2022).
Article CAS PubMed PubMed Central Google Scholar
Syn, N. L., Teng, M. W. L., Mok, T. S. K. & Soo, R. A. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 18, e731–e741 (2017).
Jenkins, R. W., Barbie, D. A. & Flaherty, K. T. Mechanisms of resistance to immune checkpoint inhibitors. Br. J. Cancer 118, 9–16 (2018).
Article CAS PubMed PubMed Central Google Scholar
Gide, T. N., Wilmott, J. S., Scolyer, R. A. & Long, G. V. Primary and acquired resistance to immune checkpoint inhibitors in metastatic melanoma. Clin. Cancer Res. 24, 1260–1270 (2018).
Article CAS PubMed Google Scholar
Andrews, A. Treating with checkpoint inhibitors – figure $1 million per patient. Am. Health Drug. Benefits 8, 9 (2015).
PubMed PubMed Central Google Scholar
Baxi, S. et al. Immune-related adverse events for anti-PD-1 and anti-PD-L1 drugs: systematic review and meta-analysis. BMJ 360, k793 (2018).
Article PubMed PubMed Central Google Scholar
Motzer, R. J. et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med. 378, 1277–1290 (2018).
Article CAS PubMed PubMed Central Google Scholar
Carreau, N. A. & Pavlick, A. C. Nivolumab and ipilimumab: immunotherapy for treatment of malignant melanoma. Future Oncol. 15, 349–358 (2019).
Article CAS PubMed Google Scholar
Nikoo, M. et al. Nivolumab plus ipilimumab combination therapy in cancer: current evidence to date. Int. Immunopharmacol. 117, 109881 (2023).
Article CAS PubMed Google Scholar
Baas, P. et al. First-line nivolumab plus ipilimumab in unresectable malignant pleural mesothelioma (CheckMate 743): a multicentre, randomised, open-label, phase 3 trial. Lancet 397, 375–386 (2021).
Article CAS PubMed Google Scholar
Wang, C. et al. The landscape of immune checkpoint inhibitor plus chemotherapy versus immunotherapy for advanced non-small-cell lung cancer: a systematic review and meta-analysis. J. Cell Physiol. 235, 4913–4927 (2020).
Article CAS PubMed Google Scholar
Galluzzi, L., Humeau, J., Buqué, A., Zitvogel, L. & Kroemer, G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat. Rev. Clin. Oncol. 17, 725–741 (2020).
Cao, Y., Langer, R. & Ferrara, N. Targeting angiogenesis in oncology, ophthalmology and beyond. Nat. Rev. Drug. Discov. 22, 476–495 (2023).
Article CAS PubMed Google Scholar
Schmidt, E. V. Developing combination strategies using PD-1 checkpoint inhibitors to treat cancer. Semin. Immunopathol. 41, 21–30 (2019).
Article CAS PubMed Google Scholar
Motz, G. T. & Coukos, G. The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nat. Rev. Immunol. 11, 702–711 (2011).
Article CAS PubMed Google Scholar
Heijmen, L. et al. Monitoring hypoxia and vasculature during bevacizumab treatment in a murine colorectal cancer model. Contrast Media Mol. imaging 9, 237–245 (2014).
Article CAS PubMed Google Scholar
Franco, M. et al. Targeted anti-VEGFR-2 therapy leads to short and long term impairment of vascular function and increases in tumor hypoxia. Cancer Res. 66, 3639–3648 (2006).
Article CAS PubMed Google Scholar
Chang, W. H. & Lai, A. G. The hypoxic tumour microenvironment: a safe haven for immunosuppressive cells and a therapeutic barrier to overcome. Cancer Lett. 487, 34–44 (2020).
Article CAS PubMed Google Scholar
Kopecka, J. et al. Hypoxia as a driver of resistance to immunotherapy. Drug. Resist. Updat. 59, 100787 (2021).
Article CAS PubMed Google Scholar
Wang, B. et al. Targeting hypoxia in the tumor microenvironment: a potential strategy to improve cancer immunotherapy. J. Exp. Clin. Cancer Res. 40, 24 (2021).
Article PubMed PubMed Central Google Scholar
Khan, K. A. & Kerbel, R. S. Improving immunotherapy outcomes with antiangiogenic treatments and vice versa. Nat. Rev. Clin. Oncol. 15, 310–324 (2018).
Article CAS PubMed Google Scholar
Fukumura, D., Kloepper, J., Amoozgar, Z., Duda, D. G. & Jain, R. K. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat. Rev. Clin. Oncol. 15, 325–340 (2018).
Article CAS PubMed PubMed Central Google Scholar
Gabrilovich, D. I. et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med. 2, 1096–1103 (1996).
Article CAS PubMed Google Scholar
Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162–174 (2009).
Article CAS PubMed PubMed Central Google Scholar
Voron, T. et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T-cells in tumors. J. Exp. Med. 212, 139–148 (2015).
Article CAS PubMed PubMed Central Google Scholar
Kim, C. G. et al. VEGF-A drives TOX-dependent T-cell exhaustion in anti-PD-1-resistant microsatellite stable colorectal cancers. Sci. Immunol. 4, eaay0555 (2019).
Article CAS PubMed Google Scholar
Huinen, Z. R., Huijbers, E. J. M., van Beijnum, J. R., Nowak-Sliwinska, P. & Griffioen, A. W. Anti-angiogenic agents – overcoming tumour endothelial cell anergy and improving immunotherapy outcomes. Nat. Rev. Clin. Oncol. 18, 527–540 (2021).
Huijbers, E. J. M. et al. Tumors resurrect an embryonic vascular program to escape immunity. Sci. Immunol. 7, eabm6388 (2022).
Article CAS PubMed Google Scholar
Motz, G. T. et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat. Med. 20, 607–615 (2014).
Article CAS PubMed PubMed Central Google Scholar
Allen, E. et al. Combined antiangiogenic and anti–PD-L1 therapy stimulates tumor immunity through HEV formation. Sci. Transl. Med. 9, eaak9679 (2017).
Article PubMed PubMed Central Google Scholar
Jain, R. K. Molecular regulation of vessel maturation. Nat. Med. 9, 685–693 (2003).
Article CAS PubMed Google Scholar
Baluk, P., Hashizume, H. & McDonald, D. M. Cellular abnormalities of blood vessels as targets in cancer. Curr. Opin. Genet. Dev. 15, 102–111 (2005).
Article CAS PubMed Google Scholar
Jain, R. K. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7, 987–989 (2001).
Article CAS PubMed Google Scholar
Singleton, D. C., Macann, A. & Wilson, W. R. Therapeutic targeting of the hypoxic tumour microenvironment. Nat. Rev. Clin. Oncol. 18, 751–772 (2021).
Stylianopoulos, T. et al. Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc. Natl Acad. Sci. USA 109, 15101–15108 (2012).
Comments (0)