From sustainable feedstocks to microbial foods

Choi, K. R., Yu, H. E. & Lee, S. Y. Microbial food: microorganisms repurposed for our food. Microb. Biotechnol. 15, 18–25 (2022).

Article  PubMed  Google Scholar 

Jahn, L. J., Rekdal, V. M. & Sommer, M. O. A. Microbial foods for improving human and planetary health. Cell 186, 469–478 (2023).

Article  CAS  PubMed  Google Scholar 

Campbellplatt, G. Fermented foods—a world perspective. Food Res. Int. 27, 253–257 (1994).

Article  Google Scholar 

Bryant, K. L., Hansen, C. & Hecht, E. E. Fermentation technology as a driver of human brain expansion. Commun. Biol. 6, 1190 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Graham, A. E. & Ledesma-Amaro, R. The microbial food revolution. Nat. Commun. 14, 2231 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ugalde, U. & Castrillo, J. in Applied Mycology and Biotechnology Vol. 2 (eds Khachatourians, G. G. & Arora, D. K.) 123–149 (Elsevier, 2002).

Goldberg, I. Single Cell Protein Vol. 1 (Springer Science and Business Media, 2013).

Jenkins, G. in Resources and Applications of Biotechnology: The New Wave Vol. 1 (ed. Greenshields, R.) 141–149 (Palgrave Macmillan, 1988).

Ritala, A., Hakkinen, S. T., Toivari, M. & Wiebe, M. G. Single cell protein—state-of-the-art, industrial landscape and patents 2001–2016. Front. Microbiol. 8, 2009 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Lee, S. Y. High cell-density culture of Escherichia coli. Trends Biotechnol. 14, 98–105 (1996).

Article  CAS  PubMed  Google Scholar 

Riesenberg, D. & Guthke, R. High-cell-density cultivation of microorganisms. Appl. Microbiol. Biotechnol. 51, 422–430 (1999).

Article  CAS  PubMed  Google Scholar 

Yunus, F.-U.-N., Nadeem, M. & Rashid, F. Single-cell protein production through microbial conversion of lignocellulosic residue (wheat bran) for animal feed. J. Inst. Brew. 121, 553–557 (2015).

Article  CAS  Google Scholar 

Antunes, F. A. F. et al. Overcoming challenges in lignocellulosic biomass pretreatment for second-generation (2G) sugar production: emerging role of nano, biotechnological and promising approaches. 3 Biotech 9, 230 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Kumar, A., Anushree, Kumar, J. & Bhaskar, T. Utilization of lignin: a sustainable and eco-friendly approach. J. Energy Inst. 93, 235–271 (2020).

Article  CAS  Google Scholar 

Rajak, R. C., Jacob, S. & Kim, B. S. A holistic zero waste biorefinery approach for macroalgal biomass utilization: a review. Sci. Total Environ. 716, 137067 (2020).

Article  CAS  PubMed  Google Scholar 

Singh, A. & Olsen, S. I. A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl. Energy 88, 3548–3555 (2011).

Article  CAS  Google Scholar 

Sarwer, A. et al. Algal biomass valorization for biofuel production and carbon sequestration: a review. Environ. Chem. Lett. 20, 2797–2851 (2022).

Article  CAS  Google Scholar 

Andayani, S. N., Lioe, H. N., Wijaya, C. H. & Ogawa, M. Umami fractions obtained from water-soluble extracts of red oncom and black oncom-Indonesian fermented soybean and peanut products. J. Food Sci. 85, 657–665 (2020).

Article  CAS  PubMed  Google Scholar 

Janssen, M., Wijffels, R. H. & Barbosa, M. J. Microalgae based production of single-cell protein. Curr. Opin. Biotechnol. 75, 102705 (2022).

Article  CAS  PubMed  Google Scholar 

Benefits of seaweed. Nat. Plants 9, 1 (2023).

Nyyssola, A., Suhonen, A., Ritala, A. & Oksman-Caldentey, K. M. The role of single cell protein in cellular agriculture. Curr. Opin. Biotechnol. 75, 102686 (2022).

Article  CAS  PubMed  Google Scholar 

Wang, S., An, Z. & Wang, Z.-W. in Advances in Bioenergy Vol. 5 (eds Li, Y. & Khanal, S. K.) 169–247 (Elsevier, 2020).

Meyer, O. Using carbon monoxide to produce single-cell protein. BioScience 30, 405–407 (1980).

Article  CAS  Google Scholar 

Durre, P. & Eikmanns, B. J. C1-carbon sources for chemical and fuel production by microbial gas fermentation. Curr. Opin. Biotechnol. 35, 63–72 (2015).

Article  PubMed  Google Scholar 

Siebert, D., Eikmanns, B. J. & Blombach, B. Exploiting aerobic carboxydotrophic bacteria for industrial biotechnology. Adv. Biochem. Eng. Biotechnol. 180, 1–32 (2022).

CAS  PubMed  Google Scholar 

Smejkalova, H., Erb, T. J. & Fuchs, G. Methanol assimilation in Methylobacterium extorquens AM1: demonstration of all enzymes and their regulation. PLoS ONE 5, e13001 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Calvey, C. H. et al. Improving growth of Cupriavidus necator H16 on formate using adaptive laboratory evolution-informed engineering. Metab. Eng. 75, 78–90 (2023).

Article  CAS  PubMed  Google Scholar 

Tong, S. et al. From formic acid to single-cell protein: genome-scale revealing the metabolic network of Paracoccus communis MA5. Bioresour. Bioprocess. 9, 55 (2022).

Article  Google Scholar 

Kang, Y., Kim, T., Jung, K. Y. & Park, K. T. Recent progress in electrocatalytic CO2 reduction to pure formic acid using a solid-state electrolyte device. Catalysts 13, 955 (2023).

Article  CAS  Google Scholar 

Matassa, S., Batstone, D. J., Hulsen, T., Schnoor, J. & Verstraete, W. Can direct conversion of used nitrogen to new feed and protein help feed the world? Environ. Sci. Technol. 49, 5247–5254 (2015).

Article  CAS  PubMed  Google Scholar 

Hu, X. et al. Microbial protein out of thin air: fixation of nitrogen gas by an autotrophic hydrogen-oxidizing bacterial enrichment. Environ. Sci. Technol. 54, 3609–3617 (2020).

Article  CAS  PubMed  Google Scholar 

Xiang, S. et al. New progress of ammonia recovery during ammonia nitrogen removal from various wastewaters. World J. Microbiol. Biotechnol. 36, 144 (2020).

Article  CAS  PubMed  Google Scholar 

Lee, B. et al. Pathways to a green ammonia future. ACS Energy Lett. 7, 3032–3038 (2022).

Article  CAS  Google Scholar 

Ye, D. & Tsang, S. C. E. Prospects and challenges of green ammonia synthesis. Nat. Synth. 2, 612–623 (2023).

Article  Google Scholar 

Molfetta, M. et al. Protein sources alternative to meat: state of the art and involvement of fermentation. Foods 11, 2065 (2022).

Liu, Y. et al. Food synthetic biology-driven protein supply transition: from animal-derived production to microbial fermentation. Chin. J. Chem. Eng. 30, 29–36 (2021).

Article  CAS  Google Scholar 

Ghazani, S. M. & Marangoni, A. G. Microbial lipids for foods. Trends Food Sci. Technol. 119, 593–607 (2022).

Article  CAS  Google Scholar 

Kim, S. W. et al. Meeting global feed protein demand: challenge, opportunity, and strategy. Annu. Rev. Anim. Biosci. 7, 221–243 (2019).

Article  CAS  PubMed  Google Scholar 

Castro-Muñoz, R., Zamidi Ahmad, M., Malankowska, M. & Coronas, J. A new relevant membrane application: CO2 direct air capture (DAC). Chem. Eng. J. 446, 137047 (2022).

Article  Google Scholar 

Ghosh, A. & Kiran, B. Carbon concentration in algae: reducing CO2 from exhaust gas. Trends Biotechnol. 35, 806–808 (2017).

Article  CAS  PubMed  Google Scholar 

Rasul, S., Pugnant, A., Xiang, H., Fontmorin, J.-M. & Yu, E. H. Low cost and efficient alloy electrocatalysts for CO2 reduction to formate. J. CO2 Util. 32, 1–10 (2019).

Article  CAS  Google Scholar 

Lachore, W. L., Andoshe, D. M., Mekonnen, M. A. & Hone, F. G. Recent progress in electron transport bilayer for efficient and low-cost perovskite solar cells: a review. J. Solid State Electrochem. 26, 295–311 (2022).

Article  CAS  Google Scholar 

Whittaker, J. A., Johnson, R. I., Finnigan, T. J. A., Avery, S. V. & Dyer, P. S. in Grand Challenges in Fungal Biotechnology Vol. 1 (ed. Nevalainen, H.) 59–79 (Springer, 2020).

Ling, C. et al. Engineering self-flocculating Halomonas campaniensis for wastewaterless open and continuous fermentation. Biotechnol. Bioeng. 116, 805–815 (2019).

Article  CAS  PubMed  Google Scholar 

Lee, J. A. et al. Factors affecting the competitiveness of bacterial fermentation. Trends Biotechnol. 41, 798–816 (2023).

Article  CAS  PubMed  Google Scholar 

Choi, H. K., Atkinson, K., Karlson, E. W., Willett, W. & Curhan, G. Purine-rich foods, dairy and protein intake, and the risk of gout in men. N. Engl. J. Med. 350, 1093–1103 (2004).

Article  CAS  PubMed  Google Scholar 

Matelbs, R. I. & Tannenbaum, S. E. Single-cell protein. Econ. Bot. 22, 42–50 (1968).

Article  Google Scholar 

Comments (0)

No login
gif