Choi, K. R., Yu, H. E. & Lee, S. Y. Microbial food: microorganisms repurposed for our food. Microb. Biotechnol. 15, 18–25 (2022).
Jahn, L. J., Rekdal, V. M. & Sommer, M. O. A. Microbial foods for improving human and planetary health. Cell 186, 469–478 (2023).
Article CAS PubMed Google Scholar
Campbellplatt, G. Fermented foods—a world perspective. Food Res. Int. 27, 253–257 (1994).
Bryant, K. L., Hansen, C. & Hecht, E. E. Fermentation technology as a driver of human brain expansion. Commun. Biol. 6, 1190 (2023).
Article PubMed PubMed Central Google Scholar
Graham, A. E. & Ledesma-Amaro, R. The microbial food revolution. Nat. Commun. 14, 2231 (2023).
Article CAS PubMed PubMed Central Google Scholar
Ugalde, U. & Castrillo, J. in Applied Mycology and Biotechnology Vol. 2 (eds Khachatourians, G. G. & Arora, D. K.) 123–149 (Elsevier, 2002).
Goldberg, I. Single Cell Protein Vol. 1 (Springer Science and Business Media, 2013).
Jenkins, G. in Resources and Applications of Biotechnology: The New Wave Vol. 1 (ed. Greenshields, R.) 141–149 (Palgrave Macmillan, 1988).
Ritala, A., Hakkinen, S. T., Toivari, M. & Wiebe, M. G. Single cell protein—state-of-the-art, industrial landscape and patents 2001–2016. Front. Microbiol. 8, 2009 (2017).
Article PubMed PubMed Central Google Scholar
Lee, S. Y. High cell-density culture of Escherichia coli. Trends Biotechnol. 14, 98–105 (1996).
Article CAS PubMed Google Scholar
Riesenberg, D. & Guthke, R. High-cell-density cultivation of microorganisms. Appl. Microbiol. Biotechnol. 51, 422–430 (1999).
Article CAS PubMed Google Scholar
Yunus, F.-U.-N., Nadeem, M. & Rashid, F. Single-cell protein production through microbial conversion of lignocellulosic residue (wheat bran) for animal feed. J. Inst. Brew. 121, 553–557 (2015).
Antunes, F. A. F. et al. Overcoming challenges in lignocellulosic biomass pretreatment for second-generation (2G) sugar production: emerging role of nano, biotechnological and promising approaches. 3 Biotech 9, 230 (2019).
Article PubMed PubMed Central Google Scholar
Kumar, A., Anushree, Kumar, J. & Bhaskar, T. Utilization of lignin: a sustainable and eco-friendly approach. J. Energy Inst. 93, 235–271 (2020).
Rajak, R. C., Jacob, S. & Kim, B. S. A holistic zero waste biorefinery approach for macroalgal biomass utilization: a review. Sci. Total Environ. 716, 137067 (2020).
Article CAS PubMed Google Scholar
Singh, A. & Olsen, S. I. A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl. Energy 88, 3548–3555 (2011).
Sarwer, A. et al. Algal biomass valorization for biofuel production and carbon sequestration: a review. Environ. Chem. Lett. 20, 2797–2851 (2022).
Andayani, S. N., Lioe, H. N., Wijaya, C. H. & Ogawa, M. Umami fractions obtained from water-soluble extracts of red oncom and black oncom-Indonesian fermented soybean and peanut products. J. Food Sci. 85, 657–665 (2020).
Article CAS PubMed Google Scholar
Janssen, M., Wijffels, R. H. & Barbosa, M. J. Microalgae based production of single-cell protein. Curr. Opin. Biotechnol. 75, 102705 (2022).
Article CAS PubMed Google Scholar
Benefits of seaweed. Nat. Plants 9, 1 (2023).
Nyyssola, A., Suhonen, A., Ritala, A. & Oksman-Caldentey, K. M. The role of single cell protein in cellular agriculture. Curr. Opin. Biotechnol. 75, 102686 (2022).
Article CAS PubMed Google Scholar
Wang, S., An, Z. & Wang, Z.-W. in Advances in Bioenergy Vol. 5 (eds Li, Y. & Khanal, S. K.) 169–247 (Elsevier, 2020).
Meyer, O. Using carbon monoxide to produce single-cell protein. BioScience 30, 405–407 (1980).
Durre, P. & Eikmanns, B. J. C1-carbon sources for chemical and fuel production by microbial gas fermentation. Curr. Opin. Biotechnol. 35, 63–72 (2015).
Siebert, D., Eikmanns, B. J. & Blombach, B. Exploiting aerobic carboxydotrophic bacteria for industrial biotechnology. Adv. Biochem. Eng. Biotechnol. 180, 1–32 (2022).
Smejkalova, H., Erb, T. J. & Fuchs, G. Methanol assimilation in Methylobacterium extorquens AM1: demonstration of all enzymes and their regulation. PLoS ONE 5, e13001 (2010).
Article PubMed PubMed Central Google Scholar
Calvey, C. H. et al. Improving growth of Cupriavidus necator H16 on formate using adaptive laboratory evolution-informed engineering. Metab. Eng. 75, 78–90 (2023).
Article CAS PubMed Google Scholar
Tong, S. et al. From formic acid to single-cell protein: genome-scale revealing the metabolic network of Paracoccus communis MA5. Bioresour. Bioprocess. 9, 55 (2022).
Kang, Y., Kim, T., Jung, K. Y. & Park, K. T. Recent progress in electrocatalytic CO2 reduction to pure formic acid using a solid-state electrolyte device. Catalysts 13, 955 (2023).
Matassa, S., Batstone, D. J., Hulsen, T., Schnoor, J. & Verstraete, W. Can direct conversion of used nitrogen to new feed and protein help feed the world? Environ. Sci. Technol. 49, 5247–5254 (2015).
Article CAS PubMed Google Scholar
Hu, X. et al. Microbial protein out of thin air: fixation of nitrogen gas by an autotrophic hydrogen-oxidizing bacterial enrichment. Environ. Sci. Technol. 54, 3609–3617 (2020).
Article CAS PubMed Google Scholar
Xiang, S. et al. New progress of ammonia recovery during ammonia nitrogen removal from various wastewaters. World J. Microbiol. Biotechnol. 36, 144 (2020).
Article CAS PubMed Google Scholar
Lee, B. et al. Pathways to a green ammonia future. ACS Energy Lett. 7, 3032–3038 (2022).
Ye, D. & Tsang, S. C. E. Prospects and challenges of green ammonia synthesis. Nat. Synth. 2, 612–623 (2023).
Molfetta, M. et al. Protein sources alternative to meat: state of the art and involvement of fermentation. Foods 11, 2065 (2022).
Liu, Y. et al. Food synthetic biology-driven protein supply transition: from animal-derived production to microbial fermentation. Chin. J. Chem. Eng. 30, 29–36 (2021).
Ghazani, S. M. & Marangoni, A. G. Microbial lipids for foods. Trends Food Sci. Technol. 119, 593–607 (2022).
Kim, S. W. et al. Meeting global feed protein demand: challenge, opportunity, and strategy. Annu. Rev. Anim. Biosci. 7, 221–243 (2019).
Article CAS PubMed Google Scholar
Castro-Muñoz, R., Zamidi Ahmad, M., Malankowska, M. & Coronas, J. A new relevant membrane application: CO2 direct air capture (DAC). Chem. Eng. J. 446, 137047 (2022).
Ghosh, A. & Kiran, B. Carbon concentration in algae: reducing CO2 from exhaust gas. Trends Biotechnol. 35, 806–808 (2017).
Article CAS PubMed Google Scholar
Rasul, S., Pugnant, A., Xiang, H., Fontmorin, J.-M. & Yu, E. H. Low cost and efficient alloy electrocatalysts for CO2 reduction to formate. J. CO2 Util. 32, 1–10 (2019).
Lachore, W. L., Andoshe, D. M., Mekonnen, M. A. & Hone, F. G. Recent progress in electron transport bilayer for efficient and low-cost perovskite solar cells: a review. J. Solid State Electrochem. 26, 295–311 (2022).
Whittaker, J. A., Johnson, R. I., Finnigan, T. J. A., Avery, S. V. & Dyer, P. S. in Grand Challenges in Fungal Biotechnology Vol. 1 (ed. Nevalainen, H.) 59–79 (Springer, 2020).
Ling, C. et al. Engineering self-flocculating Halomonas campaniensis for wastewaterless open and continuous fermentation. Biotechnol. Bioeng. 116, 805–815 (2019).
Article CAS PubMed Google Scholar
Lee, J. A. et al. Factors affecting the competitiveness of bacterial fermentation. Trends Biotechnol. 41, 798–816 (2023).
Article CAS PubMed Google Scholar
Choi, H. K., Atkinson, K., Karlson, E. W., Willett, W. & Curhan, G. Purine-rich foods, dairy and protein intake, and the risk of gout in men. N. Engl. J. Med. 350, 1093–1103 (2004).
Article CAS PubMed Google Scholar
Matelbs, R. I. & Tannenbaum, S. E. Single-cell protein. Econ. Bot. 22, 42–50 (1968).
Comments (0)