Reconstructed Human Skin with Hypodermis Shows Essential Role of Adipose Tissue in Skin Metabolism

Mukhtar H, Bickers DR. Drug metabolism in skin. Comparative activity of the mixed-function oxidases, epoxide hydratase, and glutathione S-transferase in liver and skin of the neonatal rat. Drug Metab Dispos. 1981;9:311–4.

Baron JM, Merk HF. Drug metabolism in the skin. Curr Opin Allergy Clin Immunol. 2001;1:287–91.

Article  CAS  PubMed  Google Scholar 

Cibrian D, de la Fuente H, Sánchez-Madrid F. Metabolic pathways that control skin homeostasis and inflammation. Trends Mol Med. 2020;26:975–86.

Article  CAS  PubMed  Google Scholar 

Taylor NJ, Gaynanova I, Eschrich SA, Welsh EA, Garrett TJ, Beecher C, et al. Metabolomics of primary cutaneous melanoma and matched adjacent extratumoral microenvironment. PLoS One. 2020;15:e0240849.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gibbs S, van de Sandt JJ, Merk HF, Lockley DJ, Pendlington RU, Pease CK. Xenobiotic metabolism in human skin and 3D human skin reconstructs: a review. Curr Drug Metab. 2007;8:758–72.

Article  CAS  PubMed  Google Scholar 

Kazem S, Linssen EC, Gibbs S. Skin metabolism phase I and phase II enzymes in native and reconstructed human skin: a short review. Drug Discovery Today. 2019;24:1899–910.

Article  CAS  PubMed  Google Scholar 

Hartung T. Food for thought... on animal tests. ALTEX. 2008;25:3-16.

Article  PubMed  Google Scholar 

Alépée N, Tornier C, Robert C, Amsellem C, Roux MH, Doucet O, et al. A catch-up validation study on reconstructed human epidermis (SkinEthic™ RHE) for full replacement of the Draize skin irritation test. Toxicol In Vitro. 2010;24:257–66.

Article  PubMed  Google Scholar 

Gibbs S, Corsini E, Spiekstra SW, Galbiati V, Fuchs HW, Degeorge G, et al. An epidermal equivalent assay for identification and ranking potency of contact sensitizers. Toxicol Appl Pharmacol. 2013;272:529–41.

Article  CAS  PubMed  Google Scholar 

Desprez B, Barroso J, Griesinger C, Kandárová H, Alépée N, Fuchs HW. Two novel prediction models improve predictions of skin corrosive sub-categories by test methods of OECD Test Guideline No. 431. Toxicol In Vitro. 2015;29:2055–80.

Kosten IJ, Spiekstra SW, de Gruijl TD, Gibbs S. MUTZ-3 derived Langerhans cells in human skin equivalents show differential migration and phenotypic plasticity after allergen or irritant exposure. Toxicol Appl Pharmacol. 2015;287:35–42.

Article  CAS  PubMed  Google Scholar 

Pellevoisin C, Cottrez F, Johansson J, Pedersen E, Coleman K, Groux H. Pre-validation of SENS-IS assay for in vitro skin sensitization of medical devices. Toxicol In Vitro. 2021;71:105068.

Article  CAS  PubMed  Google Scholar 

Rivera-Gonzalez G, Shook B, Horsley V. Adipocytes in skin health and disease. Cold Spring Harb Perspect Med. 2014;4:a015271.

Article  PubMed  PubMed Central  Google Scholar 

Trottier V, Marceau-Fortier G, Germain L, Vincent C, Fradette J. IFATS collection: using human adipose-derived stem/stromal cells for the production of new skin substitutes. Stem Cells. 2008;26:2713–23.

Article  PubMed  Google Scholar 

Bellas E, Seiberg M, Garlick J, Kaplan DL. In vitro 3D full-thickness skin-equivalent tissue model using silk and collagen biomaterials. Macromol Biosci. 2012;12:1627–36.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Monfort A, Soriano-Navarro M, García-Verdugo JM, Izeta A. Production of human tissue-engineered skin trilayer on a plasma-based hypodermis. J Tissue Eng Regen Med. 2012;7:479–90.

Article  PubMed  Google Scholar 

Kober J, Gugerell A, Schmid M, Kamolz LP, Keck M. Generation of a fibrin based three-layered skin substitute. Biomed Res Int. 2015;2015:170427.

Article  PubMed  PubMed Central  Google Scholar 

Kim BS, Gao G, Kim JY, Cho DW. 3D cell printing of perfusable vascularized human skin equivalent composed of epidermis, dermis, and hypodermis for better structural recapitulation of native skin. Adv Healthc Mater. 2019;8:e1801019.

Article  PubMed  Google Scholar 

Zimoch J, Zielinska D, Michalak-Micka K, Rütsche D, Böni R, Biedermann T, et al. Bio-engineering a prevascularized human tri-layered skin substitute containing a hypodermis. Acta Biomater. 2021;134:215–27.

Article  CAS  PubMed  Google Scholar 

Kroeze KL, Jurgens WJ, Doulabi BZ, van Milligen FJ, Scheper RJ, Gibbs S. Chemokine-mediated migration of skin-derived stem cells: Predominant role for CCL5/RANTES. J Invest Dermatol. 2009;129:1569–81.

Article  CAS  PubMed  Google Scholar 

Waaijman T, Breetveld M, Ulrich M, Middelkoop E, Scheper RJ, Gibbs S. Use of a collagen-elastin matrix as transport carrier system to transfer proliferating epidermal cells to human dermis in vitro. Cell Transplant. 2010;19:1339–48.

Article  PubMed  Google Scholar 

Lee MJ, Fried SK. Optimal protocol for the differentiation and metabolic analysis of human adipose stromal cells. Methods Enzymol. 2014;538:49–65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu A, Ibrahim JG, Love MI. Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics. 2019;35:2084–92.

Article  CAS  PubMed  Google Scholar 

Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14:128.

Article  PubMed  PubMed Central  Google Scholar 

Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie Z, Bailey A, Kuleshov MV, Clarke DJB, Evangelista JE, Jenkins SL, et al. Gene set knowledge discovery with enrichr. Curr Protoc. 2021;1:e90.

Article  CAS  Google Scholar 

Vahav I, van den Broek LJ, Thon M, Monsuur HN, Spiekstra SW, Atac B, et al. Reconstructed human skin shows epidermal invagination towards integrated neopapillae indicating early hair follicle formation in vitro. J Tissue Eng Regen Med. 2020;14:761–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vriens AP, Waaijman T, van den Hoogenband HM, de Boer EM, Scheper RJ, Gibbs S. Comparison of autologous full-thickness gingiva and skin substitutes for wound healing. Cell Transplant. 2008;17:1199–209.

Article  PubMed  Google Scholar 

Wu Z, Wang S. Role of kruppel-like transcription factors in adipogenesis. Dev Biol. 2013;373:235–43.

Article  CAS  PubMed  Google Scholar 

Ullah M, Stich S, Häupl T, Eucker J, Sittinger M, Ringe J. Reverse differentiation as a gene filtering tool in genome expression profiling of adipogenesis for fat marker gene selection and their analysis. PLoS One. 2013;8:e69754.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ambele MA, Dessels C, Durandt C, Pepper MS. Genome-wide analysis of gene expression during adipogenesis in human adipose-derived stromal cells reveals novel patterns of gene expression during adipocyte differentiation. Stem Cell Res. 2016;16:725–34.

Article  CAS  PubMed  Google Scholar 

Rosen ED, Spiegelman BM. What we talk about when we talk about fat. Cell. 2014;156:20–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zwick RK, Guerrero-Juarez CF, Horsley V, Plikus MV. Anatomical, physiological, and functional diversity of adipose tissue. Cell Metab. 2018;27:68–83.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cannon B, Nedergaard JAN. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84:277–359.

Article  CAS  PubMed  Google Scholar 

Volz AC, Omengo B, Gehrke S, Kluger PJ. Comparing the use of differentiated adipose-derived stem cells and mature adipocytes to model adipose tissue in vitro. Differentiation. 2019;110:19–28.

Article  CAS  PubMed  Google Scholar 

Bahmad HF, Daouk R, Azar J, Sapudom J, Teo JCM, Abou-Kheir W, et al. Modeling adipogenesis: current and future perspective. Cells. 2020;9:2326.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huber B, Kluger PJ. Decelerating mature adipocyte dedifferentiation by media composition. Tissue Eng Part C Methods. 2015;21:1237–45.

Article  CAS  PubMed  Google Scholar 

Murakami S, Futamura K, Matsumoto K, Adachi Y, Matsuda A. An epidermal keratinocyte homogenate induced type 2 and proinflammatory cytokine expression in cultured dermal cells. J Dermatol Sci. 2022;106:93–100.

Article  CAS  PubMed  Google Scholar 

van den Broek LJ, Niessen FB, Scheper RJ, Gibbs S. Development, validation and testing of a human tissue engineered hypertrophic scar model. ALTEX. 2012;29:389–402.

Article  PubMed  Google Scholar 

Sakers A, De Siqueira MK, Seale P, Villanueva CJ. Adipose-tissue plasticity in health and disease. Cell. 2022;185:419–46.

Comments (0)

No login
gif