Zhao, M., Gönczi, L., Lakatos, P. L. & Burisch, J. The burden of inflammatory bowel disease in Europe in 2020. J. Crohns Colitis 15, 1573–1587 (2021).
Srour, B. et al. Ultra-processed foods and human health: from epidemiological evidence to mechanistic insights. Lancet Gastroenterol. Hepatol. 7, 1128–1140 (2022).
AlQasrawi, D., Qasem, A. & Naser, S. A. Divergent effect of cigarette smoke on innate immunity in inflammatory bowel disease: a nicotine-infection interaction. Int J. Mol. Sci. 21, 5801 (2020).
Article CAS PubMed PubMed Central Google Scholar
Higuchi, L. M. et al. A prospective study of cigarette smoking and the risk of inflammatory bowel disease in women. Am. J. Gastroenterol. 107, 1399–1406 (2012).
Article PubMed PubMed Central Google Scholar
Papoutsopoulou, S., Satsangi, J., Campbell, B. J. & Probert, C. S. Review article: impact of cigarette smoking on intestinal inflammation-direct and indirect mechanisms. Aliment Pharm. Ther. 51, 1268–1285 (2020).
Davey Smith, G. & Hemani, G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum. Mol. Genet. 23, R89–R98 (2014).
Article CAS PubMed PubMed Central Google Scholar
Bojesen, S. E., Timpson, N., Relton, C., Davey Smith, G. & Nordestgaard, B. G. AHRR (cg05575921) hypomethylation marks smoking behaviour, morbidity and mortality. Thorax 72, 646–653 (2017).
Gao, X., Jia, M., Zhang, Y., Breitling, L. P. & Brenner, H. DNA methylation changes of whole blood cells in response to active smoking exposure in adults: a systematic review of DNA methylation studies. Clin. Epigenetics. 7, 113 (2015).
Article PubMed PubMed Central Google Scholar
Heikkinen, A., Bollepalli, S. & Ollikainen, M. The potential of DNA methylation as a biomarker for obesity and smoking. J. Intern Med. 292, 390–408 (2022).
Article CAS PubMed PubMed Central Google Scholar
Joustra, V. et al. Systematic review and meta-analysis of peripheral blood dna methylation studies in inflammatory bowel disease. J. Crohns Colitis, 17, 185–198 (2022).
Kalla, R. et al. Analysis of systemic epigenetic alterations in inflammatory bowel disease: defining geographical, genetic, and immune-inflammatory influences on the circulating methylome. J. Crohns. Colitis, 17, 170–184 (2023).
Ventham, N. T. et al. Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease. Nat. Commun. 7, 13507 (2016).
Article CAS PubMed PubMed Central ADS Google Scholar
Wang, T., Xia, P. & Su, P. High-dimensional DNA methylation mediates the effect of smoking on Crohn’s Disease. Front Genet 13, 831885 (2022).
Article CAS PubMed PubMed Central Google Scholar
Min, J. L. et al. Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation. Nat. Genet. 53, 1311–1321 (2021).
Article CAS PubMed PubMed Central Google Scholar
de Lange, K. M. et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat. Genet. 49, 256–261 (2017).
Article PubMed PubMed Central Google Scholar
Ananthakrishnan, A. N. Epidemiology and risk factors for IBD. Nat. Rev. Gastroenterol. Hepatol. 12, 205–217 (2015).
Mowat, C. et al. Mercaptopurine versus placebo to prevent recurrence of Crohn’s disease after surgical resection (TOPPIC): a multicentre, double-blind, randomised controlled trial. Lancet Gastroenterol. Hepatol. 1, 273–282 (2016).
Article PubMed PubMed Central Google Scholar
Höie, O. et al. Ulcerative colitis: patient characteristics may predict 10-yr disease recurrence in a European-wide population-based cohort. Am. J. Gastroenterol. 102, 1692–1701 (2007).
Pedersen, K. M. et al. Risk of ulcerative colitis and Crohn’s disease in smokers lacks causal evidence. Eur. J. Epidemiol. 37, 735–745 (2022).
Article CAS PubMed Google Scholar
Georgiou, A. N., Ntritsos, G., Papadimitriou, N., Dimou, N. & Evangelou, E. Cigarette smoking, coffee consumption, alcohol intake, and risk of crohn’s disease and ulcerative colitis: a mendelian randomization study. Inflamm. Bowel Dis. 27, 162–168 (2021).
Jones, D. P. et al. Exploring the effects of cigarette smoking on inflammatory bowel disease using mendelian randomization. Crohns Colitis 360. 2, otaa018 (2020).
Article PubMed PubMed Central Google Scholar
McCartney, D. L. et al. Epigenetic prediction of complex traits and death. Genome Biol. 19, 136 (2018).
Article PubMed PubMed Central Google Scholar
Piovani, D. et al. Environmental risk factors for inflammatory bowel diseases: an umbrella review of meta-analyses. Gastroenterology 157, 647–659.e644 (2019).
Cosnes, J., Beaugerie, L., Carbonnel, F. & Gendre, J. P. Smoking cessation and the course of Crohn’s disease: an intervention study. Gastroenterology 120, 1093–1099 (2001).
Article CAS PubMed Google Scholar
Beaugerie, L. et al. Impact of cessation of smoking on the course of ulcerative colitis. Am. J. Gastroenterol. 96, 2113–2116 (2001).
Article CAS PubMed Google Scholar
Guida, F. et al. Dynamics of smoking-induced genome-wide methylation changes with time since smoking cessation. Hum. Mol. Genet. 24, 2349–2359 (2015).
Article CAS PubMed PubMed Central Google Scholar
Joehanes, R. et al. Epigenetic signatures of cigarette smoking. Circ. Cardiovasc Genet. 9, 436–447 (2016).
Article CAS PubMed PubMed Central Google Scholar
Wang, X. et al. Epigenomic profiling of isolated blood cell types reveals highly specific B cell smoking signatures and links to disease risk. Clin. Epigenetics 15, 90 (2023).
Article PubMed PubMed Central Google Scholar
Abraham, C. & Cho, J. H. Inflammatory bowel disease. N. Engl. J. Med 361, 2066–2078 (2009).
Article CAS PubMed PubMed Central Google Scholar
Parkes, G. C., Whelan, K. & Lindsay, J. O. Smoking in inflammatory bowel disease: impact on disease course and insights into the aetiology of its effect. J. Crohns Colitis 8, 717–725 (2014).
Juneja, M. et al. Geriatric inflammatory bowel disease: phenotypic presentation, treatment patterns, nutritional status, outcomes, and comorbidity. Dig. Dis. Sci. 57, 2408–2415 (2012).
Mak, J. W. Y. et al. Epidemiology and natural history of elderly-onset inflammatory bowel disease: results from a territory-wide hong kong ibd registry. J. Crohns Colitis 15, 401–408 (2021).
Singh, S., Boland, B. S., Jess, T. & Moore, A. A. Management of inflammatory bowel diseases in older adults. Lancet Gastroenterol. Hepatol. 8, 368–382 (2023).
Biedermann, L. et al. Smoking cessation alters intestinal microbiota: insights from quantitative investigations on human fecal samples using FISH. Inflamm. Bowel Dis. 20, 1496–1501 (2014).
Zong, D., Liu, X., Li, J., Ouyang, R. & Chen, P. The role of cigarette smoke-induced epigenetic alterations in inflammation. Epigenetics Chromatin 12, 65 (2019).
Article PubMed PubMed Central Google Scholar
Somineni, H. K. et al. Blood-derived DNA methylation signatures of crohn’s disease and severity of intestinal inflammation. Gastroenterology 156, 2254–2265 (2019).
Article CAS PubMed Google Scholar
Franke, A. et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat. Genet 42, 1118–1125 (2010).
Article CAS PubMed PubMed Central Google Scholar
Fazio, A. et al. DNA methyltransferase 3A controls intestinal epithelial barrier function and regeneration in the colon. Nat. Commun. 13, 6266 (2022).
Article CAS PubMed PubMed Central ADS Google Scholar
Torres, J. et al. Serum biomarkers identify patients who will develop inflammatory bowel diseases up to 5 years before diagnosis. Gastroenterology 159, 96–104 (2020).
Comments (0)