de Ligt KM, Heins M, Verloop J, Smorenburg CH, Korevaar JC, Siesling S. Patient-reported health problems and healthcare use after treatment for early-stage breast cancer. The Breast. 2019;46:4–11. https://doi.org/10.1016/j.breast.2019.03.010.
Bower JE, Ganz PA, Desmond KA, Bernaards C, Rowland JH, Meyerowitz BE, Belin TR. Fatigue in long-term breast carcinoma survivors: a longitudinal investigation. Cancer. 2006;106(4):751–8. https://doi.org/10.1002/cncr.21671.
Ruiz-Casado A, Álvarez-Bustos A, de Pedro CG, Méndez-Otero M, Romero-Elías M. Cancer-related fatigue in breast cancer survivors: a review. Clin Breast Cancer. 2021;21(1):10–25. https://doi.org/10.1016/j.clbc.2020.07.011.
Goedendorp MM, Gielissen MFM, Verhagen CAHHVM, Bleijenberg G. Development of fatigue in cancer survivors: a prospective follow-up study from diagnosis into the year after treatment. J Pain Symptom Manage. 2013. https://doi.org/10.1016/j.jpainsymman.2012.02.009.
Reinertsen KV, Cvancarova M, Loge JH, Edvardsen H, Wist E, Fosså SD. Predictors and course of chronic fatigue in long-term breast cancer survivors. J Cancer Surviv. 2010;4(4):405–14. https://doi.org/10.1007/s11764-010-0145-7.
Article PubMed PubMed Central Google Scholar
Bower JE, Wiley J, Petersen L, Irwin MR, Cole SW, Ganz PA. Fatigue after breast cancer treatment: biobehavioral predictors of fatigue trajectories. Heal Psychol. 2018;37(11):1025–34. https://doi.org/10.1037/hea0000652.
Berger AM, Mooney K, Aranha O, Banerjee C, Breitbart WS, Carpenter KM, Chang Y, Davis E, Dest V, DuBenske LL, Escalante CP, Fediw M, Fernandez-Robles C, Garcia S, Jankowski C, Jatoi A, Kinczewski LE, Loggers ET, Mandrell B, McInnes S, Meyer F, Murphy BA, Palesh O, Patel H, Riba MB, Rugo HS, Salvador C, Venkat P, Wagner-Johnston N, Walter M, Webb JA, NCCN Clinical Practice Guidelines in Oncology: Cancer-Related Fatigue, Version 1.2021, 2020. https://www.nccn.org/guidelines/guidelines-detail?category=3&id=1424. Accessed Apr 2021.
Vannorsdall TD, Straub E, Saba C, Blackwood M, Zhang J, Stearns K, Smith KL. Interventions for multidimensional aspects of breast cancer-related fatigue: a meta-analytic review. Support Care Cancer. 2020. https://doi.org/10.1007/s00520-020-05752-y.
Hilfiker R, Meichtry A, Eicher M, Nilsson Balfe L, Knols RH, Verra ML, Taeymans J. Exercise and other non-pharmaceutical interventions for cancer-related fatigue in patients during or after cancer treatment: a systematic review incorporating an indirect-comparisons meta-analysis. Br J Sports Med. 2018;52(10):651–8. https://doi.org/10.1136/bjsports-2016-096422.
Tuominen L, Stolt M, Meretoja R, Leino-Kilpi H. Effectiveness of nursing interventions among patients with cancer: an overview of systematic reviews. J Clin Nurs. 2019;28(13–14):2401–19. https://doi.org/10.1111/jocn.14762.
Monga U, Garber SL, Thornby J, Vallbona C, Kerrigan AJ, Monga TN, Zimmermann KP. Exercise prevents fatigue and improves quality of life in prostate cancer patients undergoing radiotherapy. Arch Phys Med Rehabil. 2007;88(11):1416–22. https://doi.org/10.1016/j.apmr.2007.08.110.
Courtier N, Gambling T, Enright S, Barrett-Lee P, Abraham J, Mason MD. A prognostic tool to predict fatigue in women with early-stage breast cancer undergoing radiotherapy. The Breast. 2013;22(4):504–9. https://doi.org/10.1016/j.breast.2012.10.002.
Article CAS PubMed Google Scholar
Bødtcher H, Bidstrup PE, Andersen I, Christensen J, Mertz BG, Johansen C, Dalton SO. Fatigue trajectories during the first 8 months after breast cancer diagnosis. Qual Life Res. 2015;24(11):2671–9. https://doi.org/10.1007/s11136-015-1000-0.
Di Meglio A, Havas J, Soldato D, Presti D, Martin E, Pistilli B, Menvielle G, Dumas A, Charles C, Everhard S, Martin A, Coutant C, Tarpin C, Vanlemmens L, Levy C, Rigal O, Delaloge S, Lin NU, Ganz PA, Partridge AH, André F, Michiels S, Vaz-Luis I, Development and validation of a predictive model of severe fatigue after breast cancer diagnosis: toward a personalized framework in survivorship care. J Clin Oncol. 2022, pp 1–14. https://doi.org/10.1200/jco.21.01252.
Andrykowski MA, Donovan KA, Laronga C, Jacobsen PB. Prevalence, predictors, and characteristics of off-treatment fatigue in breast cancer survivors. Cancer. 2010;116(24):5740–8. https://doi.org/10.1002/cncr.25294.
Hughes A, Suleman S, Rimes KA, Marsden J, Chalder T. Cancer-related fatigue and functional impairment – towards an understanding of cognitive and behavioural factors. J Psychosom Res. 2020;134(April):110127. https://doi.org/10.1016/j.jpsychores.2020.110127.
Abrahams HJG, Gielissen MFM, Verhagen CAHHVM, Knoop H. The relationship of fatigue in breast cancer survivors with quality of life and factors to address in psychological interventions: a systematic review. Clin Psychol Rev. 2018;63:1–11. https://doi.org/10.1016/j.cpr.2018.05.004.
Article CAS PubMed Google Scholar
Bzdok D, Altman N, Krzywinski M. Statistics versus machine learning. Nat Methods. 2018;15(4):233–4. https://doi.org/10.1038/nmeth.4642.
Article CAS PubMed PubMed Central Google Scholar
Sidey-Gibbons JAM, Sidey-Gibbons CJ. Machine learning in medicine: a practical introduction. BMC Med Res Methodol. 2019;19(1):64. https://doi.org/10.1186/s12874-019-0681-4.
Article PubMed PubMed Central Google Scholar
Pfob A, Mehrara BJ, Nelson JA, Wilkins EG, Pusic AL, Sidey-Gibbons C. Machine learning to predict individual patient-reported outcomes at 2-year follow-up for women undergoing cancer-related mastectomy and breast reconstruction (INSPiRED-001). The Breast. 2021;60(520):111–22. https://doi.org/10.1016/j.breast.2021.09.009.
Article PubMed PubMed Central Google Scholar
Yu K-H, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng. 2018;2(10):719–31. https://doi.org/10.1038/s41551-018-0305-z.
Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J. 2015;13:8–17. https://doi.org/10.1016/j.csbj.2014.11.005.
Article CAS PubMed Google Scholar
Lee S, Deasy JO, Oh JH, Di Meglio A, Dumas A, Menvielle G, Charles C, Boyault S, Rousseau M, Besse C, Thomas E, Boland A, Cottu P, Tredan O, Levy C, Martin A, Everhard S, Ganz PA, Partridge AH, Michiels S, Deleuze J, Andre F, Vaz-Luis I, Prediction of breast cancer treatment–induced fatigue by machine learning using genome-wide association data. JNCI Cancer Spectr. 2020;4(5). https://doi.org/10.1093/jncics/pkaa039.
Lindsay WD, Ahern CA, Tobias JS, Berlind CG, Chinniah C, Gabriel PE, Gee JC, Simone CB. Automated data extraction and ensemble methods for predictive modeling of breast cancer outcomes after radiation therapy. Med Phys. 2019;46(2):1054–63. https://doi.org/10.1002/mp.13314.
Papachristou N, Puschmann D, Barnaghi P, et al. Learning from data to predict future symptoms of oncology patients. PLoS ONE. 2019;13(12):e0208808. https://doi.org/10.1371/journal.pone.0208808.
Günther MP, Kirchebner J, Schulze JB, von Känel R, Euler S, Towards identifying cancer patients at risk to miss out on psycho‐oncological treatment via machine learning. Eur J Cancer Care (Engl). 2022;e13555. https://doi.org/10.1111/ecc.13555.
J. Hasselaar, Nivel Primary Care Database. https://www.nivel.nl/en/nivel-zorgregistraties-eerste-lijn/nivel-primary-care-database (accessed Oct. 31, 2022).
Netherlands Comprehensive Cancer Organisation (IKNL), Netherlands Cancer Registry (NCR). https://iknl.nl/en/ncr (accessed Oct. 31, 2022).
Van De Poll-Franse LV, Horevoorts N, Van Eenbergen M, et al. The patient reported outcomes following initial treatment and long term evaluation of survivorship registry: scope, rationale and design of an infrastructure for the study of physical and psychosocial outcomes in cancer survivorship cohorts. Eur J Cancer. 2011;47(14):2188–94. https://doi.org/10.1016/j.ejca.2011.04.034.
Heins M, Verloop J, De Ligt K, Siesling S, Korevaar J. Primary Secondary Cancer Care Registry (PSCCR): following breast cancer patients from their first complaints up to 15 years after diagnosis. Eur J Cancer. 2018;92(March):S39–40. https://doi.org/10.1016/S0959-8049(18)30344-7.
de Ligt KM, Heins M, Verloop J, Ezendam NPM, Smorenburg CH, Korevaar JC, Siesling S. The impact of health symptoms on health-related quality of life in early-stage breast cancer survivors. Breast Cancer Res Treat. 2019;178(3):703–11. https://doi.org/10.1007/s10549-019-05433-3.
Article PubMed PubMed Central Google Scholar
Aaronson NK, Ahmedzai S, Bergman B, et al. The European Organization for Research and Treatment of Cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology. JNCI J Natl Cancer Inst. 1993;85(5):365–76. https://doi.org/10.1093/jnci/85.5.365.
Article CAS PubMed Google Scholar
Yzermans J, Baliatsas C, van Dulmen S, Van Kamp I. Assessing non-specific symptoms in epidemiological studies: development and validation of the Symptoms and Perceptions (SaP) questionnaire. Int J Hyg Environ Health. 2016;219(1):53–65. https://doi.org/10.1016/j.ijheh.2015.08.006.
Makaba T and Dogo E, A comparison of strategies for missing values in data on machine learning classification algorithms, in 2019 International multidisciplinary information technology and engineering conference (IMITEC), Vanderbijlpark, South Africa, Nov. 2019. pp. 1–7, https://doi.org/10.1109/IMITEC45504.2019.9015889.
Wulff JN, Ejlskov L. Multiple imputation by chained equations in praxis: guidelines and review. Electron J Bus Res Methods. 2017;15(1):41–56.
Slade E, Naylor MG. A fair comparison of tree-based and parametric methods in multiple imputation by chained equations. Stat Med. 2020;39(8):1156–66. https://doi.org/10.1002/sim.8468.
Article PubMed PubMed Central Google Scholar
Cawley GC, Talbot NLC. On over-fitting in model selection and subsequent selection bias in performance evaluation. J Mach Learn Res. 2010;11:2079–107.
Belete DM, Huchaiah MD. Grid search in hyperparameter optimization of machine learning models for prediction of HIV/AIDS test results. Int J Comput Appl. 2022;44(9):875–86. https://doi.org/10.1080/1206212X.2021.1974663.
Hosmer DW, Lemeshow S, and Sturdivant RX, Assessing the fit of the model, in Applied Logistic Regression (editors: Hosmer DW, Lemeshow S, and Sturdivant RX), 2013. pp. 153-225. https://doi.org/10.1002/9781118548387.ch5
Verbakel JY, Steyerberg EW, Uno H, De Cock B, Wynants L, Collins GS, Van Calster B. ROC curves for clinical prediction models part 1. ROC plots showed no added value above the AUC when evaluating the performance of clinical prediction models. J Clin Epidemiol. 2020;126:207–16. https://doi.org/10.1016/j.jclinepi.2020.01.028.
Moons KGM, Altman DG, Reitsma JB, Ioannidis JPA, Macaskill P, Steyerberg EW, Vickers AJ, Ransohoff DF, Collins GS. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162(1):W1–73. https://doi.org/10.7326/M14-0698.
Comments (0)