Hunter ZR, Xu L, Yang G, et al. The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood. 2014;123(11):1637–46.
Article CAS PubMed Google Scholar
Treon SP, Xu L, Yang G, et al. MYD88 L265P somatic mutation in Waldenstrom’s macroglobulinemia. N Engl J Med. 2012;367(9):826–33.
Article CAS PubMed Google Scholar
Gustine JN, Tsakmaklis N, Demos MG, et al. TP53 mutations are associated with mutated MYD88 and CXCR4, and confer an adverse outcome in Waldenstrom macroglobulinaemia. Br J Haematol. 2019;184(2):242–5.
Article CAS PubMed Google Scholar
Krzisch D, Guedes N, Boccon-Gibod C, et al. Cytogenetic and molecular abnormalities in Waldenstrom’s macroglobulinemia patients: correlations and prognostic impact. Am J Hematol. 2021;96(12):1569–79.
Article CAS PubMed Google Scholar
Poulain S, Roumier C, Bertrand E, et al. TP53 mutation and its prognostic significance in Waldenstrom’s macroglobulinemia. Clin Cancer Res. 2017;23(20):6325–35.
Article CAS PubMed Google Scholar
Varettoni M, Zibellini S, Defrancesco I, et al. Pattern of somatic mutations in patients with Waldenstrom macroglobulinemia or IgM monoclonal gammopathy of undetermined significance. Haematologica. 2017;102(12):2077–85.
Article CAS PubMed PubMed Central Google Scholar
Munshi M, Liu X, Kofides A, et al. A new role for the SRC family kinase HCK as a driver of SYK activation in MYD88 mutated lymphomas. Blood Adv. 2022;6(11):3332–8.
Article CAS PubMed PubMed Central Google Scholar
Cao Y, Hunter ZR, Liu X, et al. The WHIM-like CXCR4(S338X) somatic mutation activates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom’s Macroglobulinemia. Leukemia. 2015;29(1):169–76.
Castillo JJ, Xu L, Gustine JN, et al. CXCR4 mutation subtypes impact response and survival outcomes in patients with Waldenstrom macroglobulinaemia treated with ibrutinib. Br J Haematol. 2019;187(3):356–63.
Article CAS PubMed Google Scholar
Bustoros M, Sklavenitis-Pistofidis R, Kapoor P, et al. Progression risk stratification of asymptomatic Waldenstrom macroglobulinemia. J Clin Oncol. 2019;37(16):1403–11.
Article CAS PubMed PubMed Central Google Scholar
Kyle RA, Treon SP, Alexanian R, et al. Prognostic markers and criteria to initiate therapy in Waldenstrom’s macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom’s Macroglobulinemia. Semin Oncol. 2003;30(2):116–20.
Zanwar S, Abeykoon JP, Ansell SM, et al. Disease outcomes and biomarkers of progression in smouldering Waldenström macroglobulinaemia. Br J Haematol. 2021;195(2):210–6.
Article CAS PubMed Google Scholar
Rummel MJ, Niederle N, Maschmeyer G, et al. Bendamustine plus rituximab versus CHOP plus rituximab as first-line treatment for patients with indolent and mantle-cell lymphomas: an open-label, multicentre, randomised, phase 3 non-inferiority trial. Lancet. 2013;381(9873):1203–10.
Article CAS PubMed Google Scholar
Paludo J, Abeykoon JP, Shreders A, et al. Bendamustine and rituximab (BR) versus dexamethasone, rituximab, and cyclophosphamide (DRC) in patients with Waldenstrom macroglobulinemia. Ann Hematol. 2018;97(8):1417–25.
Article CAS PubMed Google Scholar
Dimopoulos MA, Anagnostopoulos A, Kyrtsonis MC, et al. Primary treatment of Waldenstrom macroglobulinemia with dexamethasone, rituximab, and cyclophosphamide. J Clin Oncol. 2007;25(22):3344–9.
Article CAS PubMed Google Scholar
Kastritis E, Gavriatopoulou M, Kyrtsonis MC, et al. Dexamethasone, rituximab, and cyclophosphamide as primary treatment of Waldenstrom macroglobulinemia: final analysis of a phase 2 study. Blood. 2015;126(11):1392–4.
Auer RL, Owen RG, D’Sa S, et al. Subcutaneous bortezomib, cyclophosphamide and rituximab (BCR) versus fludarabine, cyclophosphamide and rituximab (FCR) for Initial Therapy of Waldenstrőm’s macroglobulinemia: a randomised phase II study. Blood. 2016;128(22):618.
Dimopoulos MA, Garcia-Sanz R, Gavriatopoulou M, et al. Primary therapy of Waldenstrom macroglobulinemia (WM) with weekly bortezomib, low-dose dexamethasone, and rituximab (BDR): long-term results of a phase 2 study of the European Myeloma Network (EMN). Blood. 2013;122(19):3276–82.
Article CAS PubMed Google Scholar
Ghobrial IM, Hong F, Padmanabhan S, et al. Phase II trial of weekly bortezomib in combination with rituximab in relapsed or relapsed and refractory Waldenstrom macroglobulinemia. J Clin Oncol. 2010;28(8):1422–8.
Article CAS PubMed PubMed Central Google Scholar
Treon SP, Ioakimidis L, Soumerai JD, et al. Primary therapy of Waldenstrom macroglobulinemia with bortezomib, dexamethasone, and rituximab: WMCTG clinical trial 05–180. J Clin Oncol. 2009;27(23):3830–5.
Article CAS PubMed PubMed Central Google Scholar
Dimopoulos MA, Zervas C, Zomas A, et al. Treatment of Waldenstrom’s macroglobulinemia with rituximab. J Clin Oncol. 2002;20(9):2327–33.
Article CAS PubMed Google Scholar
Treon SP, Emmanouilides C, Kimby E, et al. Extended rituximab therapy in Waldenstrom’s macroglobulinemia. Ann Oncol. 2005;16(1):132–8.
Article CAS PubMed Google Scholar
Treon SP, Gustine J, Meid K, et al. Ibrutinib monotherapy in symptomatic, treatment-naive patients with Waldenstrom macroglobulinemia. J Clin Oncol. 2018;36(27):2755–61.
Article CAS PubMed Google Scholar
Owen RG, McCarthy H, Rule S, et al. Acalabrutinib monotherapy in patients with Waldenstrom macroglobulinemia: a single-arm, multicentre, phase 2 study. Lancet Haematol. 2020;7(2):e112–21.
Tam CS, Opat S, D’Sa S, et al. A randomized phase 3 trial of zanubrutinib versus ibrutinib in symptomatic waldenstrom macroglobulinemia: the aspen study. Blood. 2020;136(18):2038–50.
Article CAS PubMed PubMed Central Google Scholar
Treon SP, Tripsas CK, Meid K, et al. Ibrutinib in previously treated Waldenstrom’s macroglobulinemia. N Engl J Med. 2015;372(15):1430–40.
Article CAS PubMed Google Scholar
Buske C, Tedeschi A, Trotman J, et al. Ibrutinib plus rituximab versus placebo plus rituximab for Waldenstrom’s macroglobulinemia: final analysis from the randomized phase III innovate study. J Clin Oncol. 2022;40(1):52–62.
Article CAS PubMed Google Scholar
Owen R, McCarthy H, Rule S, et al. P1130: acalabrutinib in treatment-naive or relapsed/refractory Waldenström macroglobulinemia: 5-year follow-up of a phase 2. Single-arm study. HemaSphere. 2022;6:1020–1.
Article PubMed Central Google Scholar
Byrd JC, Hillmen P, Ghia P, et al. Acalabrutinib versus ibrutinib in previously treated chronic lymphocytic leukemia: results of the first randomized phase III trial. J Clin Oncol. 2021;39(31):3441–52.
Article CAS PubMed PubMed Central Google Scholar
Dimopoulos MA, Opat S, D'Sa S, et al. Zanubrutinib Versus Ibrutinib in Symptomatic Waldenstrom Macroglobulinemia: Final Analysis From the Randomized Phase III ASPEN Study. J Clin Oncol. 2023:JCO2202830.
Dimopoulos M, Sanz RG, Lee HP, et al. Zanubrutinib for the treatment of MYD88 wild-type Waldenstrom macroglobulinemia: a substudy of the phase 3 ASPEN trial. Blood Adv. 2020;4(23):6009–18.
Article PubMed PubMed Central Google Scholar
Cao XX, Jin J, Fu CC, et al. Evaluation of orelabrutinib monotherapy in patients with relapsed or refractory Waldenstrom’s macroglobulinemia in a single-arm, multicenter, open-label, phase 2 study. EClinicalMedicine. 2022;52: 101682.
Article PubMed PubMed Central Google Scholar
Sekiguchi N, Rai S, Munakata W, et al. A multicenter, open-label, phase II study of tirabrutinib (ONO/GS-4059) in patients with Waldenstrom’s macroglobulinemia. Cancer Sci. 2020;111(9):3327–37.
Article CAS PubMed PubMed Central Google Scholar
Castillo JJ, Gustine JN, Meid K, Dubeau T, Severns P, Treon SP. Ibrutinib withdrawal symptoms in patients with Waldenstrom macroglobulinemia. Haematologica. 2018;103(7):e307–10.
Article CAS PubMed PubMed Central Google Scholar
Sarosiek S, Gustine JN, Flynn CA, et al. Dose reductions in patients with Waldenstrom macroglobulinaemia treated with ibrutinib. Br J Haematol. 2023;201(5):897–904.
Article CAS PubMed Google Scholar
Awan FT, Schuh A, Brown JR, et al. Acalabrutinib monotherapy in patients with chronic lymphocytic leukemia who are intolerant to ibrutinib. Blood Adv. 2019;3(9):1553–62.
Comments (0)